Unlike the traditional method for power quality improvement and low-voltage ride through (LVRT) capability enhancement of wind farms, this paper proposes a new wind power integrated system by means of an inductive filtering method, especially if it contains a grid-connected transformer, a static synchronous compensator (STATCOM) and fully-tuned (FT) branches. First, the main circuit topology of the new wind power integrated system is presented. Then, the mathematical model is established to reveal the mechanism of harmonic suppression and the reactive compensation of the proposed wind power integrated system, and then the realization conditions of the inductive filtering method is obtained. Further, the control strategy of STATCOM is introduced. Based on the measured data for a real wind farm, the simulation studies are carried out to illustrate the performance of the proposed new wind power integrated system. The results indicate that the new system can not only enhance the LVRT capability of wind farms, but also prevent harmonic components flowing into the primary (grid) winding of the grid-connected transformer. Moreover, since the new method can compensate for reactive power in a wind farm, the power factor at the grid side can be improved effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.