In this paper, we propose an optically controlling broadband terahertz modulator of a layer-dependent PtSe2 nanofilm based on a high-resistance silicon substrate. Through optical pump and terahertz probe system, the results show that compared with 6-, 10-, and 20-layer films, a 3-layer PtSe2 nanofilm has better surface photoconductivity in the terahertz band and has a higher plasma frequency ωp of 0.23 THz and a lower scattering time τs of 70 fs by Drude–Smith fitting. By the terahertz time-domain spectroscopy system, the broadband amplitude modulation of a 3-layer PtSe2 film in the range of 0.1–1.6 THz was obtained, and the modulation depth reached 50.9% at a pump density of 2.5 W/cm2. This work proves that PtSe2 nanofilm devices are suitable for terahertz modulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.