Artifacts in fMRI data, primarily those related to motion and physiological sources, negatively impact the functional signal-to-noise ratio in fMRI studies, even after conventional fMRI preprocessing. Independent component analysis’ demonstrated capacity to separate sources of neural signal, structured noise, and random noise into separate components might be utilized in improved procedures to remove artifacts from fMRI data. Such procedures require a method for labeling independent components (ICs) as representing artifacts to be removed or neural signals of interest to be spared. Visual inspection is often considered an accurate method for such labeling as well as a standard to which automated labeling methods are compared. However, detailed descriptions of methods for visual inspection of ICs are lacking in the literature. Here we describe the details of, and the rationale for, an operationalized fMRI data denoising procedure that involves visual inspection of ICs (96% inter-rater agreement). We estimate that dozens of subjects/sessions can be processed within a few hours using the described method of visual inspection. Our hope is that continued scientific discussion of and testing of visual inspection methods will lead to the development of improved, cost-effective fMRI denoising procedures.
Objective To study neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette syndrome. Method We acquired fMRI data from 13 participants with Tourette syndrome and 21 controls during spontaneous or simulated tics. We used independent component analysis with hierarchical partner matching to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. We used Granger causality to investigate causal interactions among these regions. Results We found that the Tourette group exhibited stronger neural activity and interregional causality than controls throughout all portions of the motor pathway including sensorimotor cortex, putamen, pallidum, and substania nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette group was stronger during spontaneous tics than during voluntary tics in somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette group than in controls within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may fail to control tic behaviors or the premonitory urges that generate them. Conclusions Our findings taken together suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico-striato-thalamo-cortical circuits.
Objective The authors examined the effect of psychostimulants on brain activity in children and adolescents with ADHD performing the Stroop Color and Word Test. Method The authors acquired 52 functional MRI scans in 16 youths with ADHD who were known responders to stimulant medication and 20 healthy comparison youths. Participants with ADHD were scanned on and off medication in a counterbalanced design, and comparison subjects were scanned once without medication. Results Stimulant medication significantly improved suppression of default-mode activity in the ventral anterior cingulate cortex in the ADHD group. When off medication, youths with ADHD were unable to suppress default-mode activity to the same degree as comparison subjects, whereas when on medication, they suppressed this activity to comparison group levels. Greater activation of the lateral prefrontal cortex when off medication predicted a greater reduction in ADHD symptoms when on medication. Granger causality analyses demonstrated that activity in the lateral prefrontal and ventral anterior cingulate cortices mutually influenced one another but that the influence of the ventral anterior cingulate cortex on the lateral prefrontal cortex was significantly reduced in youths with ADHD off medication relative to comparison subjects and increased significantly to normal levels when ADHD youths were on medication. Conclusions Psychostimulants in youths with ADHD improved suppression of default-mode activity in the ventral anterior cingulate and posterior cingulate cortices, components of a circuit in which activity has been shown to correlate with the degree of mind-wandering during attentional tasks. Stimulants seem to improve symptoms in youths with ADHD by normalizing activity within this circuit and improving its functional interactions with the lateral prefrontal cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.