Rock classification is a significant branch of geology which can help understand the formation and evolution of the planet, search for mineral resources, and so on. In traditional methods, rock classification is usually done based on the experience of a professional. However, this method has problems such as low efficiency and susceptibility to subjective factors. Therefore, it is of great significance to establish a simple, fast, and accurate rock classification model. This paper proposes a fine-grained image classification network combining image cutting method and SBV algorithm to improve the classification performance of a small number of fine-grained rock samples. The method uses image cutting to achieve data augmentation without adding additional datasets and uses image block voting scoring to obtain richer complementary information, thereby improving the accuracy of image classification. The classification accuracy of 32 images is 75%, 68.75%, and 75%. The results show that the method proposed in this paper has a significant improvement in the accuracy of image classification, which is 34.375%, 18.75%, and 43.75% higher than that of the original algorithm. It verifies the effectiveness of the algorithm in this paper and at the same time proves that deep learning has great application value in the field of geology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.