The microstructure and mechanical properties of as-aged Mg-6Zn-4Sn-1Mn-xAl (ZTM641-xAl, x = 0, 0.2, 0.5, 1, 2, 3 and 4 wt.%) alloys are studied in this paper. In terms of microstructure, the results reveal that the addition of Al mainly leads to the formation of the Al8Mn5, Al11Mn4, Al2Mg5Zn2 and Mg32(Al,Zn)49 phases. With increases in the addition of Al, the average grain size first decreases and then increases, while the undissolved phases increase. The average grain size of the ZTM641-0.5Al alloy is the smallest, and the single-aged and double-aged grain size is 14 μm and 12 μm, respectively. As for mechanical properties, with increases in the Al element, the strength decreases, and the elongation first increases and then decreases. The double-aged ZTM641-0.2Al alloy exhibits favorable mechanical properties at room temperature, and the UTS, YS and elongation are 384 MPa, 360 MPa and 9%, respectively. Further, the double-aged ZTM641-0.2Al alloy exhibits the comprehensive mechanical properties at 150 °C, that is, the UTS, YS and elongation are 212 MPa, 196 MPa and 29%, respectively, which is about 45% higher than that of the elongation of ZTM641. The ZTM641-xAl alloys exhibits mixed fracture at room temperature, and, with increases in the addition of Al, the fracture mechanisms of alloys are mixed fracture, ductile fracture and mixed fracture at 200 °C.