Applying parachutes-deployed Wireless Sensor Network (WSN) in monitoring the high-altitude space is a promising solution for its effectiveness and cost. However, both the high deviation of data and the rapid change of various environment factors (air pressure, temperature, wind speed, etc.) pose a great challenge. To this end, we solve this challenge with data compensation in dynamic stress measurements of parachutes during the working stage. Specifically, we construct a data compensation model to correct the deviation based on neural network by taking into account a variety of environmental parameters, and name it as Data Compensation based on Back Propagation Neural Network (DC-BPNN). Then, for improving the speed and accuracy of training the DC-BPNN, we propose a novel Adaptive Artificial Bee Colony (AABC) algorithm. We also address its stability of solution by deriving a stability bound. Finally, to verify the real performance, we conduct a set of real implemented experiments of airdropped WSN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.