As a global-optimized and naturally inspired algorithm, particle swarm optimization (PSO) is characterized by its high quality and easy application in practical optimization problems. However, PSO has some obvious drawbacks, such as early convergence and slow convergence speed. Therefore, we introduced some appropriate improvements to PSO and proposed a novel chaotic PSO variant with arctangent acceleration coefficient (CPSO-AT). A total of 10 numerical optimization functions were employed to test the performance of the proposed CPSO-AT algorithm. Extensive contrast experiments were conducted to verify the effectiveness of the proposed methodology. The experimental results showed that the proposed CPSO-AT algorithm converges quickly and has better stability in numerical optimization problems compared with other PSO variants and other kinds of well-known optimal algorithms.
Particle swarm optimization (PSO) is a common metaheuristic algorithm. However, when dealing with practical engineering structure optimization problems, it is prone to premature convergence during the search process and falls into a local optimum. To strengthen its performance, combining several ideas of the differential evolution algorithm (DE), a dynamic probability mutation particle swarm optimization with chaotic inertia weight (CWDEPSO) is proposed. The main improvements are achieved by improving the parameters and algorithm mechanism in this paper. The former proposes a novel inverse tangent chaotic inertia weight and sine learning factors. Besides, the scaling factor and crossover probability are improved by random distributions, respectively. The latter introduces a monitoring mechanism. By monitoring the convergence of PSO, a developed mutation operator with a more reliable local search capability is adopted and increases population diversity to help PSO escape from the local optimum effectively. To evaluate the effectiveness of the CWDEPSO algorithm, 24 benchmark functions and two groups of engineering optimization experiments are used for numerical and engineering optimization, respectively. The results indicate CWDEPSO offers better convergence accuracy and speed compared with some well-known metaheuristic algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.