Considering that the road short-term traffic flow has strong time series correlation characteristics, a new long-term and short-term memory neural network (LSTM)-based prediction model optimized by the improved genetic algorithm (IGA) is proposed to improve the prediction accuracy of road traffic flow. Firstly, an improved genetic algorithm (IGA) is proposed by dynamically adjusting the mutation rate and crossover rate of standard GA. Secondly, the parameters of the LSTM, such as the number of hidden units, training times, gradient threshold and learning rate, are optimized by the IGA. Therefore, the optimal parameters are obtained. In the analysis stage, 5-min short-term traffic flow data are used to demonstrate the superiority of the proposed method over the existing neural network algorithms. Finally, the results show that the Root Mean Square Error achieved by the proposed algorithm is lower than that achieved by the other neural network methods in both the weekday and weekend data sets. This verifies that the algorithm can adapt well to different kinds of data and achieve higher prediction accuracy.
This paper addresses the problem of dynamic multiobjective optimization problems (DMOPs), by demonstrating new approaches to change detection and change prediction in an evolutionary algorithm framework. Because the objectives of such problems change over time, the Pareto optimal set (PS) and Pareto optimal front (PF) are also dynamic. First, we propose a new change detection method which achieves greater sensitivity by considering changes in both the PS and the PF, unlike most previous approaches. Second, when changes occur, a secondorder (acceleration-based) prediction strategy is proposed to predictively re-initialize the population close to the new set of optima. We compare the performance of the proposed algorithm against two other state-of-the-art algorithms from the literature, using ten different benchmark dynamic instance test problems. Experimental results show that the proposed method outperforms the other algorithms on most of the test problems.
This paper proposes a novel hybrid car-following model: the physics-informed conditional generative adversarial network (PICGAN), designed to enhance multi-step car-following modeling in mixed traffic flow scenarios. This hybrid model leverages the strengths of both physics-based and deep-learning-based models. By taking advantage of the inherent structure of GAN, the PICGAN eliminates the need for an explicit weighting parameter typically used in the combination of traditional physics-based and data-driven models. The effectiveness of the proposed model is substantiated through case studies using the NGSIM I-80 dataset. These studies demonstrate the model’s superior trajectory reproduction, suggesting its potential as a strong contender to replace conventional models in trajectory prediction tasks. Furthermore, the deployment of PICGAN significantly enhances the stability and efficiency in mixed traffic flow environments. Given its reliable and stable results, the PICGAN framework contributes substantially to the development of efficient longitudinal control strategies for connected autonomous vehicles (CAVs) in real-world mixed traffic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.