We often wish to classify objects by their shapes. Indeed, the study of shapes is an important part of many scientific fields, such as evolutionary biology, structural biology, image processing and archaeology. However, mathematical shape spaces are rather complicated and nonlinear. The most widely used methods of shape analysis, geometric morphometrics, treat the shapes as sets of points. Diffeomorphic methods consider the underlying curve rather than points, but have rarely been applied to real-world problems. Using a machine classifier, we tested the ability of several of these methods to describe and classify the shapes of a variety of organic and man-made objects. We find that one method, based on square-root velocity functions (SRVFs), outperforms all others, including a standard geometric morphometric method (eigenshapes), and that it is also superior to human experts using shape alone. When the SRVF approach is constrained to take account of homologous landmarks it can accurately classify objects of very different shapes. The SRVF method identifies a shortest path between shapes, and we show that this can be used to estimate the shapes of intermediate steps in evolutionary series. Diffeomorphic shape analysis methods, we conclude, now provide practical and effective solutions to many shape description and classification problems in the natural and human sciences.
Conifers make up about one third of global forests but are threatened by seed parasitoid wasp species. Many of these wasps belong to the genus Megastigmus, yet little is known about their genomic background. In this study, we provide chromosome‐level genome assemblies for two oligophagous conifer parasitoid species of Megastigmus, which represent the first two chromosome‐level genomes of the genus. The assembled genomes of Megastigmus duclouxiana and M. sabinae are 878.48 Mb (scaffold N50 of 215.60 Mb) and 812.98 Mb (scaffold N50 of 139.16 Mb), respectively, which are larger than the genome size of most hymenopterans due to the expansion of transposable elements. Expanded gene families highlight the difference in sensory‐related genes between the two species, reflecting the difference in their hosts. We further found that these two species have fewer family members but more single‐gene duplications than polyphagous congeners in the gene families of ATP‐binding cassette transporter (ABC), cytochrome P450 (P450) and olfactory receptors (OR). These findings shed light on the pattern of adaptation to a narrow spectrum of hosts in oligophagous parasitoids. Our findings suggest potential drivers underlying genome evolution and parasitism adaptation, and provide valuable resources for understanding the ecology, genetics and evolution of Megastigmus, as well as for the research and biological control of global conifer forest pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.