For the long-term development of shopping mall, the managers of shopping mall tend to build a new store to expand the enterprise’s market share in a new city. After holding a preliminary survey of the city, managers have initially identified five sites for construction. In order to select an optimal site, managers invite four experts who come from university, marking statistics, corporate executives and accounting to score sites. And they choose the best site on the basis of scores. The trait of EDAS method is to select an optimal alternative by using the distance of each alternative from the first-rank value. In this manuscript, we build the picture fuzzy EDAS method based on the cumulative prospect theory (PF-CPT-EDAS) for multiple attribute group decision-making (MAGDM) and it can help managers to choose an optimal alternative effectively. During the procedure of PF-CPT-EDAS means, we take advantage of the entropy means to calculate the original weights of all attributes. Ultimately, we testify the effectiveness of the novel model by comparing the overcome of PF-CPT-EDAS means with the results of PF-EDAS approach and other methods.
With the development of society, people’s living standard is constantly improving. Meanwhile, people need various food to satisfy their needs in daily life. Under this situation, more and more food enterprises are appearing in the market. However, some issues about food safety come out. Because of the huge number of food company, managers are difficult in achieving profitability. Therefore, some of the managers try to use some unhealthy materials to produce food in the society. So, it is important for people to distinguish healthy and unhealthy food enterprises in their daily life. In order to help government discern and control the quality of healthy food enterprises in the market, we need to propose an effective evaluation system in estimating food enterprises. In this paper, we introduce a method of evaluating the quality degree of food enterprises which can help us to distinguish enterprises effectively. As we all know, the method of TODIM is widely used in multiple attribute decision making (MADM). In this article, we describe the extended TODIM which based on the cumulative prospect theory (CPT) with picture fuzzy numbers (PF-CPT-TODIM) and use it to evaluate food companies. What’s more, we use entropy method to decide the weights of various attributes. Finally, we select optimal enterprise by using the PF-CPT-TODIM method. Furthermore, we use the comparison of the results of classical PF-TODIM method and PFWA operators to test the availability of PF-CPT-TODIM. It not only can enrich decision-making methods but also make up for the traditional PF-TODIM method in considering the psychological aspects of decision makers.
In the garment manufacturing industry, purchasing management is an important link. The materials of making clothes often need high cost. In addition, customers put forward a request in the quality of clothes. Thus, choosing an optimal supplier is an essential part of job. Reaching cooperation with an optimal supplier not only can help garment manufacturer improve the quality of clothes but also is benefit to reduce the cost of producing. Most importantly, it can improve the competitiveness of manufacture enterprises. So, it is important for managers to find an optimal supplier and make a cooperation with it. In this paper, we analysis an issue about choosing an optimal supplier during four different suppliers. With analyzing this problem, we can introduce an extended method under picture fuzzy environment to evaluate and choose an optimal supplier. In this article, we describe some basic knowledges about picture fuzzy sets (PFSs) and picture fuzzy numbers (PFNs). Then, we introduce the extension of MABAC method which is on the basis of prospect theory (PT) with picture fuzzy numbers (PF-PT-MABAC) and utilize the PF-PT-MABAC model to evaluate different suppliers to choose an optimal supplier. Finally, we compare the result of PF-PT-MABAC with the result of traditional MABAC, PFWG operators and traditional TODIM method to test the efficiency of PF-PT-MABAC model.
In order to monitor the combustion condition and improve the product material quality, a digital image acquisition and processing method is adopted in alumina-sintering process. Two digital properties of flame grade and material grade are obtained by image data analyzing and smooth filtering, which provide reliable reference for operational optimization and automatic control of rotary kilns. This image acquisition system improves the operation of kiln effectively and reduces the working intensity and the manufacture cost.
The combustion stability has a significant influence on safety and reliability of a gas-fired boiler. In this study, a numerical model was first established and validated to investigate the effect of combustion stabilizing device on flow and combustion characteristics of 75 t/h blast furnace gas (BFG) and coke oven gas (COG) mixed-fired boiler. The results indicated that the device coupled with four corner burners enables the flame to spin upward around its side surface, which facilitates heat exchange between BFG and the device. Under stable combustion condition, the combustion stabilizing device can be used as a stable heat source and enhance heat exchange in the furnace. Then, to obtain optimal COG ratio, combustion process of different blending ratios were experimentally investigated. The experimental results revealed that the energy loss due to high exhaust gas temperature is relatively high. COG ratio should be set up taking into account both boiler efficiency and NOX emissions. When COG blending ratio is maintained about 20%, the thermal efficiency of the boiler is 88.84% and the NOX concentration is 152 mg/m3 at 6% O2, meeting NOX emissions standard for the gas boiler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.