a b s t r a c tWe consider the multi-class classification problem in learning theory. A learning algorithm by means of Parzen windows is introduced. Under some regularity conditions on the conditional probability for each class and some decay condition of the marginal distribution near the boundary of the input space, we derive learning rates in terms of the sample size, window width and the decay of the basic window. The choice of the window width follows from bounds for the sample error and approximation error. A novelly defined splitting function for the multi-class classification and a comparison theorem, bounding the excess misclassification error by the norm of the difference of function vectors, play an important role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.