Up to now, the studies in the world have demonstrated that CT-guided percutaneous neurolytic celiac plexus block (PNCPB) is an invaluable therapeutic modality in the treatment of refractory abdominal pain caused by cancer. Its efficacy of pain relief varied in reported studies. The main technical considerations which would affect the analgesic effects on abdominal pain included the patients' cooperation, needle entry approaches, combined use of blocking approaches, localization of the target area, dosage of the blocker, and so on. A success of PNCPB depends greatly on close cooperation with patients. The patient should be educated about the purpose and steps of the procedure, and trained of breathing in and breathing hold. The needle entry can be divided into the posterior approach and the anterior approach. The former one is the most commonly used in clinical practice, but the latter one is rarely used except in the cases that the posterior approach becomes technically difficult. Bilateral multiple blocking of celiac plexus and splanchnic nerves is often required to achieve optimal analgesia. The needle entry site, insertion course, and depth should be preselected and simulated on CT monitor prior to the procedure in order to ensure an accurate and safe celiac plexus block. The magnitude of analgesic effect is closely related to the degree of degeneration and necrosis of the celiac plexus. Maximally filling with blocker in the retropancreatic space is an indication of sufficient blocking. We also provided an overview of indications and contraindications, preoperative preparations, complications and its treatment of PNCPB.
Residential solid fuel combustion (RSFC) is a key cause of air pollution in China. In these serial studies, field measurements of RSFC from 166 rural households in eastern China were conducted to update the database of emission factors (EFs) and chemical profiles of gaseous and particulate organic pollutants, and the present study focuses on the intermediate volatile organic compounds (IVOCs), which are precursors of secondary organic aerosol (SOA). The results show that the averaged EFs of IVOCs (EFIVOC) for crop straw, fuelwood, and coal are 550.7 ± 397.9, 416.1 ± 249.5, and 361.9 ± 308.0 mg/kg, respectively, which are among the EFIVOC of gasoline vehicle, diesel vehicle, non-road machinery, and heavy fuel oil vessel, and are significantly affected by fuel, stove, and combustion efficiency. The percentages of normal alkanes (n-alkanes), branched alkanes (b-alkanes), polycyclic aromatic hydrocarbons (PAHs), and unresolved complex mixture from RSFC are 3.5 ± 1.6, 8.0 ± 3.7, 17.6 ± 6.7, and 70.9 ± 8.1%, respectively, and the compositions are featured by lower b-alkanes and higher PAHs than those of vehicle sources. The proportions of some individual n-alkanes and PAHs (such as n-C12–n-C15, naphthalene, and its alkyl substituents) can be used as indicators to differentiate RSFC from vehicle sources, while methoxyphenols can be used to distinguish biomass burning from coal combustion. Based on China’s energy statistics, the total IVOC emissions from RSFC in 2014 were 175.9 Gg. These data will help to update the IVOC emission inventory and improve the estimates of SOA production in China.
Abstract:The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed that strength could increase by up to nine percent with the addition of a small amount of microcapsules and then decrease with an increasing amount of microcapsules. An orthogonal test for investigating the strength recovery rate was designed and implemented for bending and compression using the factors of water/cement ratio, amount of microcapsules, and preloading rate. It is shown that the amount of microcapsules plays a key role in the strength recovery rate. Chloride ion permeability tests were also carried out to investigate the recovery rate and healing effect. The initial damage was obtained by subjecting the specimens to compression. Both the recovery rate and the healing effect were nearly proportional to the amount of microcapsules. The obtained cementitious composites can be seen as self-healing owing to their recovery behavior for both strength and permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.