Ground-based synthetic aperture radar (GB-SAR) has been proved to be one of the cutting-edge techniques for the timely detection of slope failures in both natural and engineered slopes. This paper focuses on the structure deformation monitoring on the dams using GB-SAR data. Temporal sequence data was collected by ground SAR equipment from 29 July to 1 August for the Geheyan dam and the SAR images with high quality were selected through the exhaustive spatial-temporal coherence analysis based on permanent scatterer (PS) theory in this paper. A practical solution for dam structure deformation extraction after the atmospheric effect reduction is proposed in depth. The deformation of the dam spillway gates is greater than that of the dam body monitored by this GB-SAR campaign, and with the increase of the water level in the reservoir area, the displacement increases along the direction of water flow gradually. The surface deformation rate of the dam body is fitted by linear regression analysis, and the interpolated rate results are compared and verified with the plumb line measurements. Finally, the consistency of the dam deformation average rate based on the PS time series analysis technology by GB-SAR and plumb lines is verified in this article, demonstrated the excellent performance of the proposed method for remote multipoint displacement measurements of the dam.
Ground-based synthetic aperture radar (GBSAR) is a powerful tool used in monitoring structures, such as bridges and dams. However, despite the extremely short range of GBSAR interferometry, the atmosphere effects cannot be neglected. The permanent scatterer technique is an effective operational tool that utilizes a long series of SAR data and detects information with high accuracy. An algorithm based on the permanent scatterer technique is developed in accordance with the phase model used in GBSAR interferometry. In this study, atmospheric correction is carried out on a real campaign (Geheyan Dam, China). The atmosphere effects created using this method, which utilizes SAR data, can be reduced effectively compared to when plumb line data are used.
The surface subsidence in Nanjing has become increasingly apparent because of the influence of geological conditions and the rapid progress of urbanization. Here, the theory of synthetic aperture radar interferometry is analysed, and a method based on the short baseline subset (SBAS) technology is proposed. The method can overcome time and baseline decorrelation and other factors, and it can extract points with high coherence from interferograms have short spatio-temporal baselines when the atmospheric delay phase and the noise phase in the frequency domain are used to differentiate the corresponding characteristics. The slow deformation ratio of the monitoring area over long periods can also be calculated by this method. In this study, the 16 advanced land observing satellite (ALOS) data acquired from 2007 to 2011 in Nanjing are processed by the SBAS technology and compared with levelling result. This work emphasizes that the SBAS technology could derive the cumulative deformations of surfaces and deformation fields accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.