Understanding the dynamics of polycentric urbanization is important for urban studies and management. This paper proposes an analytical model that uses multisource big geospatial data to characterize such dynamics to facilitate policy making. There are four main steps: 1) main centers and subcenters are identified using spatial cluster analysis and geographically weighted regression (GWR) based on Visible Infrared Imaging Radiometer Suite (VIIRS)/NPP and social media check-in data; 2) the built-up areas are extracted by using Defense Meteorological Satellite Program – Operational Linescan System (DMSP/OLS) gradient images; 3) the economic corridors that connect the main center and subcenters are constructed using road network data from Open Street Map (OSM) with the least-cost distance method; and 4) the major urban development direction is identified by analyzing the changes in built-up areas within the economic corridors. The model is applied to three major cities in northeastern, central, and northwestern China (Shenyang, Wuhan, and Xi'an) from 1992 to 2012.
Mastering the evolution of urban land cover is important for urban management and planning. In this paper, a method for analyzing land cover evolution within urban built-up areas based on nighttime light data and Landsat data is proposed. The method solves the problem of inaccurate descriptions of urban built-up area boundaries from the use of single-source diurnal or nocturnal remote sensing data and was able to achieve an effective analysis of land cover evolution within built-up areas. Four main procedures are involved: (1) The neighborhood extremum method and maximum likelihood method are used to extract nighttime light data and the urban built-up area boundaries from the Landsat data, respectively; (2) multisource urban boundaries are obtained using boundary pixel fusion of the nighttime light data and Landsat urban built-up area boundaries; (3) the maximum likelihood method is used to classify Landsat data within multisource urban boundaries into land cover classes, such as impervious surface, vegetation and water, and to calculate landscape indexes, such as overall landscape trends, degree of fragmentation and degree of aggregation; (4) the changes in the multisource urban boundaries and landscape indexes were obtained using the abovementioned methods, which were supported by multitemporal nighttime light data and Landsat data, to model the urban land cover evolution. Using the cities of Shenyang, Changchun and Harbin in northeastern China as experimental areas, the multitemporal landscape index showed that the integration and aggregation of land cover in the urban areas had an increasing trend, the natural environment of Shenyang and Harbin was improving, while Changchun laid more emphasis on the construction of artificial facilities. At the same time, the method proposed in this paper to extract built-up areas from multi-source city data showed that the user accuracy, production accuracy, overall accuracy and Kappa coefficient are at least 3%, 1%, 1% and 0.04 higher than the single-source data method.
The urban spatial structure is a key feature of the distribution of social and economic resources. The spatial structure of an urban agglomeration is an abstract relationship expression of urbanization. Urban agglomerations develop for multiple reasons, including urban planning and natural evolution. To date, most research related to urban agglomeration has been based on single data source, which is a limitation. This research aims to propose a spatial structure identification method for urban agglomerations via a complex network based on nighttime light data and railway data. Firstly, we extracted the urban built-up area using defense meteorological satellite program/operational line scanner (DMSP/OLS) data, and divided it into urban objects to obtain the nighttime light urban network (NLUN) by borough. Secondly, we aggregated railway stations at municipal level using railway operation data to obtain the railway urban network (RUN). Following this, we established a composite urban network (CUN) consisting of the NLUN and the RUN based on the composite adjacency matrix. Finally, the Louvain algorithm and the comprehensive strength index (CSI) were used to detect the communities and central nodes of the CUN and obtain the urban agglomerations and core cities. The results show that urban agglomeration identification based on the CUN has the best accuracy, which is 5.72% and 15.94% higher than that of the NLUN and RUN, respectively. Core cities in the urban agglomeration identified by the CSI in the CUN are at least 3.04% higher than those in the single-source urban network. In addition, the distribution pattern of Chinese urban agglomerations in the study area is expressed as “three vertical”, and the development level of urban agglomeration shows an unbalanced trend.
The urban built-up area change monitoring is important for Urban planning. In this paper, 2016 and 2019 remote sensing images and POI data of Shenyang are selected for monitoring urban built-up area change. First, the remote sensing images and POI data are preprocessed. Second, the urban built-up change area of Shenyang is extracted from remote sensing images by neural network classification. Third, the built-up change area of Shenyang is extracted from POI data by kernel density surfaces. Finally, the similarities and differences are analyzed between the two data in urban built-up area change. Experimental results: the growth trends of built-up areas are same, but the change areas were quite different. The change area is about 404.8km2 with the remote sensing images, and the change area is about 63.3 km2 with POI data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.