BackgroundThe repetitive antigen stimulation during chronic infection often leads to the accumulation of CD8+CD57+ T cells. These cells express high levels of interferon-γ, granzyme B and perforin with elevated cytolytic effect, and are considered as the most potent cells for combating chronical viral infection. The status of CD8+CD57+ T cells in non-small cell lung cancer (NSCLC) has not been well defined.MethodsWe used flow cytometry and undertook a systemic approach to examine the frequency, immunophenotyping and functional properties of CD8+CD57+ T cells in the peripheral blood, tumor tissue and the corresponding normal tissue, as well as lung draining lymph nodes, of patients with NSCLC.ResultsCD57+ T cells expressed high levels of programmed cell death-1 (PD-1) in all tested compartments and were predominantly CD8+ T cells. These cells in the peripheral blood displayed a terminally differentiated phenotype as defined by loss of CD27 and CD28 while expressing KLRG1. CD8+CD57+ T cells exhibited enhanced cytotoxic potencies and impaired proliferative capability. Unlike CD57+ T cells in the peripheral blood, a significant proportion of CD57+ T cells in the primary tumors expressed CD27 and CD28. CD8+CD57+ T cells in tumors lacked cytotoxic activity. The proliferative activity of these cells was also impaired. CD8+CD57+ T cells in the corresponding normal lung tissues shared similarities with their counterparts in peripheral blood rather than their counterparts in tumors. The vast majority of CD8+CD57+ T cells in lung draining lymph nodes were positive for CD27 and CD28. These cells were unable to produce perforin and granzyme B, but their proliferative activity was preserved. CD8+CD57+ T cells in tumors displayed an inferior response to PD-1 blockade compared with their CD8+CD57- counterparts. Interleukin (IL)-15 preferentially restored the effector function of these cells. Additionally, IL-15 was able to restore the impaired proliferative activity of CD8+CD57+ T cells in tumors and peripheral blood.ConclusionsOur data indicate that the failure of the immune system to fight cancer progression could be a result of impaired CD8+ T-cell functional maturation into fully differentiated effector T cells within the tumor microenvironment. Boosting IL-15 activity might promote tumor-reactive CD8+ T-cell functional maturation while preserving their proliferative activity.
Interferon-gamma (IFN-γ) is a major effector molecule of immunity and a common feature of tumors responding to immunotherapy. Active IFN-γ signaling can directly trigger apoptosis and cell cycle arrest in human cancer cells. However, the mechanisms underlying these actions remain unclear. Here, we report that IFN-γ rapidly increases protein synthesis and causes the unfolded protein response (UPR), as evidenced by the increased expression of glucose-regulated protein 78, activating transcription factor-4, and c/EBP homologous protein (CHOP) in cells treated with IFN-γ. The JAK1/2-STAT1 and AKT-mTOR signaling pathways are required for IFN-γ-induced UPR. Endoplasmic reticulum (ER) stress promotes autophagy and restores homeostasis. Surprisingly, in IFN-γ-treated cells, autophagy was impaired at the step of autophagosome-lysosomal fusion and caused by a significant decline in the expression of lysosomal membrane protein-1 and −2 (LAMP-1/LAMP-2). The ER stress inhibitor 4-PBA restored LAMP expression in IFN-γ-treated cells. IFN-γ stimulation activated the protein kinase-like ER kinase (PERK)-eukaryotic initiation factor 2a subunit (eIF2α) axis and caused a reduction in global protein synthesis. The PERK inhibitor, GSK2606414, partially restored global protein synthesis and LAMP expression in cells treated with IFN-γ. We further investigated the functional consequences of IFN-γ-induced ER stress. We show that inhibition of ER stress significantly prevents IFN-γ-triggered apoptosis. CHOP knockdown abrogated IFN-γ-mediated apoptosis. Inhibition of ER stress also restored cyclin D1 expression in IFN-γ-treated cells. Thus, ER stress and the UPR caused by IFN-γ represent novel mechanisms underlying IFN-γ-mediated anticancer effects. This study expands our understanding of IFN-γ-mediated signaling and its cellular actions in tumor cells.
Stimulator of interferon genes (STING) pathway activation predicts the effectiveness of targeting the PD-1/PD-L1 axis in lung cancer. Active IFN-γ signaling is a common feature in tumors that respond to PD-1/PD-L1 blockade. The connection between IFN-γ and STING signaling in cancer cells has not been documented. We showed that IFN-γ caused DNA damage and the accumulation of cytosolic dsDNA, leading to the activation of the cGAS- and IFI16-dependent STING pathway in lung adenocarcinoma cells. IFN-γ-induced iNOS expression and nitric oxide production were responsible for DNA damage and STING activation. Additional etoposide treatment enhanced IFN-γ-induced IFN-β and CCL5 expression. Tumor-infiltrating T cells stimulated with a combination of anti-CD3 and anti-PD-1 antibodies caused STING activation and increased IFN-β and CCL5 expression in lung adenocarcinoma. These effects were abrogated by the addition of an IFN-γ neutralizing antibody. Our results suggest that the activation of tumor-infiltrating T cells could alter the tumor microenvironment via the IFN-γ-mediated activation of STING signaling in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.