These studies provide evidence that PMN apoptosis is delayed in the cornea of B6 versus BALB/c mice after bacterial infection; that in B6 mice, blocking SP interaction with the NK-1R promotes earlier apoptosis and improves disease outcome; that M(phi)s regulate PMN apoptosis; and that M(phi)s from B6 versus BALB/c mice differ in expression of the NK-1R and cytokines produced after LPS challenge.
Fas-FasL interaction in the cornea balances the host innate immune response to improve disease outcome by promoting earlier apoptosis and regulating proinflammatory cytokines/chemokines and nitric oxide (nitrite) production. Dysregulation of this interaction contributes to bystander tissue damage, enhancing nutrients for bacterial growth and worsened disease outcome after P. aeruginosa infection.
Quasi‐static uniaxial compression experiments were conducted on a polymer‐bonded explosive (PBX) simulant. At macro‐scale, the deformation and fracture process of samples were recorded using a charge‐coupled‐device camera. Microscopic examination was conducted to in situ observe the deformation and fracture processes of samples using SEM equipped with a loading stage. Microscopic damage modes, including interfacial debonding and particle fracture, were observed. The digital image correlation (DIC) technique was used to calculate the recorded images, and the macro‐ and micro‐scale displacement and strain fields were determined. Crack initiation, crack propagation, fracture behaviour and failure mechanism of samples were studied. The effects of aspect ratios on fracture behaviour and failure mechanism of PBX simulant were analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.