Blackleg on potato plants (Solanum tuberosum) is caused by Pectobacterium spp. and Dickeya spp. (Charkowski, 2018) worldwide. From June to August in both 2018 and 2019, cases of blackleg were investigated in potato-producing areas in Hulunbuir, Ulanqab, and Hohhot in Inner Mongolia, China. The total surveyed field area was about 200 hectares. The plants showed typical blackleg symptoms, such as black and stunted stems or curled leaves (Fig. S1), and the number of infected plants were counted. The disease showed an incidence of around 8%. Five diseased plants were collected from a 10 ha potato field with approximately 75,000 potato plants (cv. mainly Favorita and Xisen) per hectare. Two-centimeter-long samples of symptomatic stems were removed from the selected plants using a sterile scalpel. The surfaces of the samples were disinfected with 75% ethanol for 2 min. They were then rinsed with sterile distilled water and soaked in 5 ml sterile distilled water for 30 min. Aliquots of three tenfold dilutions of this solution were plated onto the crystal violet pectate agar (CVP) plate and incubated for 3 days at 28°C (Ge et al., 2018). A single bacterial colony that showed pitting on CVP plates (Fig. S2) was picked with a toothpick, streaked onto nutritional agar (She et al., 2013) to obtain pure colonies. Amplification of a 1.4-kb segment containing 16S rRNA gene was performed on the pure colonies using the universal primer set 27F/1492R (Monciardini et al., 2002). The amplicons were sequenced and submitted to the GenBank Nucleotide Basic Local Alignment Search Tool analysis. The 16S rRNA gene sequences of four isolates (GenBank accession numbers: MN626412, MN626449, MN625916, and MT235556) showed more than 99% sequence identity to Pectobacterium parmentieri type strain RNS 08-42-1A (NR_153752.1) (Fig. S3). Six housekeeping genes proA (MT427753-MT427756), gyrA (MT427757–MT427760), icdA (MT427761-MT427764), mdh (MT427765–MT427768), gapA (MT427769-MT427772), and rpoS (MT427773–MT427776) of these four isolates were amplified and sequenced (Ma et al., 2007, Waleron et al., 2008). All sequences showed 99% to 100% sequence identity with Pectobacterium parmentieri strains. Phylogenetic trees (Fig. S4) were constructed by multi-locus sequence analysis (MLSA) using MEGA 6.0 software (Tamura et al., 2013). The samples were tested against Koch’s postulates on potato seedlings (cv. Favorita) by injecting 100 μl bacterial suspension (107 CFU/ml) or sterile phosphate buffered solution into the stems 2 cm above the base (Ge et al., 2018). The seedlings were incubated at 21°C and 80% humidity (She et al., 2013). Three to 5 days after inoculation, only infected seedlings showed similar symptoms as those observed in the field: the infected area turned black and rotten (Fig. S5). Bacterial colonies isolated from these symptomatic seedlings were identified using the same methods described above and were identified as inoculated Pectobacterium parmentieri strains. Blackleg on potato plants has been reported to be caused by Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum, and Pectobacterium carotovorum subsp. brasiliense in China (Zhao et al., 2018). To our knowledge, this is the first report of blackleg of potato caused by Pectobacterium parmentieri in Inner Mongolia, China. We believe that this report will draw attention to the identification of this pathogen, which is essential to disease management.
Pectobacterium spp. and Dickeya spp. cause blackleg and soft rot on potato worldwide (Charkowski, 2018). Potato plants (cv. Favorita or Jizhang 8#) with blackleg symptoms (vascular browning of crown stems, Fig. S1) were observed in the field in Zhangjiakou, Hebei province in 2018, and in Ningde, Fujian Province in 2019, in China. The disease incidence was around 50% and 10% in Zhangjiakou (5 ha) and Ningde (4 ha), respectively. Diseased plants (3 from each site) were collected to isolate the pathogen. Blackleg symptomatic stems were soaked in 75% ethanol for 2 min, rinsed and ground in sterile distilled water. Serial tenfold dilutions of the above solution were plated onto the crystal violet pectate agar (CVP) plate (Ge et al., 2018). Two to 3 days after incubation at 28°C, 4 bacterial colonies in total which digested pectin from the media and developed pit on CVP plates were purified and sequenced for identification using the universal 16S rRNA gene primer set 27F/1492R (Monciardini et al., 2002). Two colony sequences that showed more than 99% sequence identity to Pectobacterium punjabense type strain SS95 (MH249622) were submitted to the GenBank ( accession numbers: OK510280, MT242589). Additionally, six housekeeping genes proA (OK546205, OK546199), gyrA (OK546206, OK546200), icdA (OK546207, OK546201), mdh (OK546208, OK546202), gapA (OK546209, OK546203), and rpoS (OK546210, OK546204) of these two isolates were amplified and sequenced (Ma et al., 2007, Waleron et al., 2008). All strains show 99% to 100% identity with MH249622T . Phylogenetic trees based on 16S rRNA gene sequences (Fig. S2) and concatenated sequences of the housekeeping genes (Fig. S3) of the 2 isolates were constructed using MEGA 6.0 software (Tamura et al., 2013). Koch’s postulate was performed on potato seedlings and potato tubers (cv. Favorita) by injecting 100 μl bacterial suspension (105 CFU/ml) or sterile phosphate-buffered solution into the crown area of the stems or the tubers and kept at 100% humidity and 21°C for 1 day. Four days after inoculation, the infected area of the inoculated seedlings rotten and turned black, while the controls were symptomless (Fig. S4). Two days after inoculation, the infected tubers rotten and turned black, while the controls were symptomless (Fig. S4). Bacterial colonies were reisolated from these symptomatic tissues and identified using the same methods described above. Blackleg on potato plants or soft rot on potato has been reported to be caused by Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. brasiliense, Pectobacterium parmentieri, Pectobacterium polaris in China (Zhao et al., 2018; Cao et al., 2021; Wang et al., 2021). To our knowledge, this is the first report of blackleg/soft rot of potato caused by Pectobacterium punjabense in China. We believe that this report will draw attention to the management of this pathogen in China.
Lithium recovery from an aqueous resource was accelerated by electrochemically driving the transformation of MnIV/MnIII with a spinel λ‐MnO2 film electrode. A λ‐MnO2 electrode without binders or conductive additives is preferred for achieving a large capacity at high current density and long‐term cycling capability. In this study, a film of Mn(OH)2 was first deposited on the surface of Pt or graphite substrates owing to alkalization near the cathode, then it was oxidized to a Mn3O4 film by air, followed by being hydrothermally lithiated to LiMn2O4 spinel and, finally, it was turned into the λ‐MnO2 film electrode through potentiostatic delithiation. The results show that the charging/discharging electric capacity of the fabricated λ‐MnO2 film electrode was up to ≈100 mAh g−1 at a current density of 50 mA g−1 in 30 mm Li+ aqueous solution, twice that of the λ‐MnO2 powder electrode. Also, 82.3 % lithium capacity remained after 100 cycles of an electrochemically assisted lithium recovery process, indicating high availability and good stability of the λ‐MnO2 spinel on the electrode. The energy consumption for each cycle is estimated to be approximately 1.55±0.09 J, implying that only 4.14 Wh is required for recovery of one mole of lithium ions by this method.
To establish the optimum fertilizer rate and propose an appropriate drip fertigation regime for potato (Solanum tuberosum L.) on sandy soil, a two-year field experiment comparing different fertigation levels on potato yield, irrigation water productivity (IWP) and partial fertilizer productivity (PFP) was carried out during 2012–2013. The treatments included five fertigation levels: 10%, 30%, 50%, 70% and 90% of the recommended fertilizer dose of 420:105:495 of N:P:K in kg ha–1 year–1 in 2012; and 10%, 35%, 60%, 85% and 110% of the recommended dose of 390:150:465 of N:P:K in kg ha–1 year–1 in 2013. The recommended fertilizer dose was estimated based on the method of nutrient balance for a target yield of 45.0 Mg ha–1. The soil matric potential at 20 cm depth beneath the emitters was controlled above –25 kPa for drip fertigation. Results showed the highest tuber yield was 38.0 Mg ha–1 for 90%NPK in 2012 and 45.8 Mg ha–1 for 60%NPK in 2013, which was significantly higher than that for 10%NPK. The highest IWP was for 70%NPK in 2012 and 60%NPK in 2013. The highest PFP values were 255.5 kg kg−1 in 2012 and 316.4 kg kg−1 in 2013, recorded in the 10%NPK plots and were significantly higher than for other fertigation treatments. High yield levels of potatoes and both high IWP and PFP could be reached by drip fertigation with 72% of the recommended fertilization dose. Compared with the recommended fertilizer dose, the yield and IWP of 72% NPK increased by 5.9% and 4.7%, respectively. It was possible to make average savings in one season alone of 136, 36 and 152 kg ha–1 N, P2O5 and K2O, respectively. In conclusion, drip fertigation with 72% NPK should be considered optimum for potato production on sandy soils. Each fertilizer amount based on irrigation interval was applied with irrigation quota at 5–6 mm when soil matric potential at soil depths of 20 cm immediately under drip emitters reached –25 kPa. Furthermore, drip fertigation was triggered when 10 consecutive days were without fertigation or rainfall in 24 h exceeded 10 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.