Hexagonal boron nitride (h-BN) has recently emerged as an excellent substrate for graphene nanodevices, owing to its atomically flat surface and its potential to engineer graphene's electronic structure. Thus far, graphene/h-BN heterostructures have been obtained only through a transfer process, which introduces structural uncertainties due to the random stacking between graphene and h-BN substrate. Here we report the epitaxial growth of single-domain graphene on h-BN by a plasma-assisted deposition method. Large-area graphene single crystals were successfully grown for the first time on h-BN with a fixed stacking orientation. A two-dimensional (2D) superlattice of trigonal moiré pattern was observed on graphene by atomic force microscopy. Extra sets of Dirac points are produced as a result of the trigonal superlattice potential and the quantum Hall effect is observed with the 2D-superlattice-related feature developed in the fan diagram of longitudinal and Hall resistance, and the Dirac fermion physics near the original Dirac point is unperturbed. The macroscopic epitaxial graphene is in principle limited only by the size of the h-BN substrate and our synthesis method is potentially applicable on other flat surfaces. Our growth approach could thus open new ways of graphene band engineering through epitaxy on different substrates.
Abstract:Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new twodimensional (2D) material that holds promise for electronic and photonic technology. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectrum range from visible to mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that match well with the absorption edge, indicating they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other twodimensional materials in electronic and opto-electronic applications.Page 3 of 17! ! Atomically thin 2D crystals have emerged as a new class of materials with unique material properties that are potentially important for electronic and photonic technologies [1][2][3][4][5][6][7][8][9][10] . Various 2D crystals have been uncovered, ranging from metallic (and superconducting) NbSe 2 and semimetallic graphene to semiconducting MoS 2 and insulating hexagonal boron nitride (hBN).The energy bandgap, a defining characteristic of an electronic material, varies correspondingly from 0 (in metals and graphene) to 5.8 eV (in hBN) in these 2D crystals. Despite the rich variety currently available, 2D materials with a bandgap in the range from 0.3 eV to 1.5 eV are notably missing 11 . Such a bandgap corresponds to a spectral range from mid-infrared to near-infrared that is important for optoelectronic technologies such as telecommunication and solar energy harvesting. It is therefore desirable to have 2D materials with a bandgap that falls in this range, and in particular, matches that of the technologically important silicon (bandgap = 1.1 eV) and III-V semiconductors like InGaAs, without compromising sample mobility 12 .Monolayer and few-layer phosphorene are predicted to bridge the much needed bandgap range from 0.3 to 2 eV (Refs. 13-17). Inside monolayer phosphorene, each phosphorus atom is covalently bonded with three adjacent phosphorus atoms to form a puckered honeycomb structure 18 . The three near sp 3 bonds together with the lone-pair orbital take up all five valence electrons of phosphorus, so monolayer phosphorene is a semiconductor with a predicted direct optical bandgap of ~ 1.5 eV at the Γ point of the Brillouin zone. The bandgap in few-layer phosphorene can be strongly modified by interlayer interactions, which leads to a bandgap that decreases with phosphorene film thickness, eventually reaching 0.3 eV in the bulk limit.Experimental observations of layer-dependent band structure in phosphorene, on the other hand, have been rather limited. Previously, photoluminescence (PL) spectroscopy has been used to probe the bandgap of monolayer and few-layer phosphorene 8,[19][20][21][22] . Such studies, howeve...
Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.
In this study, we report a buckling approach for graphene and graphene ribbons on stretchable elastomeric substrates. Stretched polydimethylsiloxane (PDMS) films with different prestrains were used to receive the transferred graphene, and nanoscale periodical buckling of graphene was spontaneously formed after strain release. The morphology and periodicity of the as-formed graphene ripples are dependent strongly on their original shapes and substrates' prestrains. Regular periodicity of the ripples preferred to form for narrow graphene ribbons, and both the amplitude and periodicity are reduced with the increase of prestrain on PDMS. The graphene ripples have the ability to afford large strain deformation, thus making it ideal for flexible electronic applications. It was demonstrated that both graphene ribbon and nanographene film ripples could be used for strain sensors, and their resistance changes upon different strains were studied. This simple and controllable process of buckled graphene provides a feasible fabrication for graphene flexible electronic devices and strain sensors due to its novel mechanical and electrical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.