Non-intrusive load monitoring (NILM) can obtain fine-grained electricity consumption information of each appliance by analyzing the voltage and current data measured at a single point on the bus, which is of great significance for promoting and improving the efficiency and sustainability of the power grid and enhancing the energy efficiency of users. NILM mainly includes data collection and preprocessing, event detection, feature extraction, and appliance identification. One of the most critical steps in NILM is signature extraction, which is the basis for all algorithms to achieve good state detection and energy disaggregation. With the generalization of machine learning algorithms, different algorithms have also been used to extract unique signatures of appliances. Recently, the development and deployment of the voltage–current (V-I) trajectory signatures applied for appliance identification motivated us to present a comprehensive review in this domain. The V-I trajectory signatures have the potential to be an intermediate domain between computer vision and NILM. By identifying the V-I trajectory, we can detect the operating state of the appliance. We also summarize existing papers based on V-I trajectories and look forward to future research directions that help to promote the field’s development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.