To flocculate the cyanobacterium Microcystis aeruginosa from water, larch tannin, a natural polymer, was modified by Mannich reaction to obtain a flocculant, named A-TN, which was then quaternized to yield another flocculant, named Q-TN. A-TN and Q-TN were characterized by Fourier transform infrared spectra (FTIR) and zeta potential analysis. The effects of the flocculation parameters, e.g., dosage, pH, cell density, culture time, and extracellular organic materials, were studied. The results showed that Q-TN was effective under a wider range of pH values than A-TN and could work under a pH of 9.0, whereas A-TN could work only under a pH of 7.0. For algal samples with densities from 1 × 10(8) to 5 × 10(9) cells/L, the optimum dosages of Q-TN to achieve more than 90% removal efficiency ranged from 0.5 to 20 mg/L, and the optimum dosages had a good linear relationship with cell density. Furthermore, the required dosage of Q-TN clearly increased along with the algae culture time, most of which was consumed by the extracellular organic materials (EOM) excreted from the cells. The spectra of the three-dimensional excitation-emission matrix showed that 100% of simple aromatic proteins and 78.8% of protein-like substances in the EOM could be removed by Q-TN. However, Q-TN was less effective in humic/fulvic-like substance flocculation. Q-TN functioned to settle the algae cells and a large amount of their metabolites effectively.
A new kind of molecularly imprinted polymer (MIP) microspheres for the selective extraction of kaempferol was prepared by precipitation polymerization using 4-vinylpridine (4-VP) and ethylene glycol dimethacrylate (EDMA) as functional monomer and cross-linker respectively. The synthesis conditions, such as ratios of 4-VP/EDMA and polymerization time were discussed in detail. Results showed that the 2% was the optimal concentration of co-monomers to obtain monodisperse MIP microspheres, the best ratio of 4-VP/EDMA was 1:2, and 24 h was considered as the proper polymerization time. Compared with the MIP agglomeration or coagulum particles, monodisperse MIP microspheres showed the better adsorption capacity: the saturated adsorption capacity of monodisperse MIP microspheres was 7.47 mg g−1, the adsorption equilibrium could be obtained in 30 min. Finally, the adsorption performances of the optimal MIP microspheres were evaluated by kinetic adsorption, adsorption isotherm, and selective adsorption experiments, which indicated that the adsorption mechanism were chemical single layer adsorption and the separation factor was up to 3.91 by comparing with the structure similar compound (quercetin). The MIP microspheres exhibit prospects in the kaempferol efficient and selective separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.