The simultaneous entrapment of biological macromolecules and nanostructured silica-coated magnetite in sol-gel materials using a reverse-micelle technique leads to a bioactive, mechanically stable, nanometer-sized, and magnetically separable particles. These spherical particles have a typical diameter of 53 +/- 4 nm, a large surface area of 330 m(2)/g, an average pore diameter of 1.5 nm, a total pore volume of 1.427 cm(3)/g and a saturated magnetization (M(S)) of 3.2 emu/g. Peroxidase entrapped in these particles shows Michaelis-Mentan kinetics and high activity. The catalytic reaction will take place immediately after adding these particles to the reaction solution. These enzyme entrapping particles catalysts can be easily separated from the reaction mixture by simply using an external magnetic field. Experiments have proved that these catalysts have a long-term stability toward temperature and pH change, as compared to free enzyme molecules. To further prove the application of this novel magnetic biomaterial in analytical chemistry, a magnetic-separation immunoassay system was also developed for the quantitative determination of gentamicin. The calibration for gentamicin has a working range of 200-4000 ng/mL, with a detection limit of 160 ng/mL, which is close to that of the fluorescent polarization immunoassay (FPIA) using the same reactants.
In this paper, we present a technique for the preparation of polymer nanowires with the protein molecule imprinted and binding sites at surface. These surface imprinting nanowires exhibit highly selective recognition for a variety of template proteins, including albumin, hemoglobin, and cytochrome c. This recognition may be through a multistep adsorption, with the specificity conferred by hydrogen bonding and shape selectivity. Due to the protein imprinted sites are located at, or close to, the surface; these imprinted nanowires have a good site accessibility toward the target protein molecules. Furthermore, the large surface area of the nanowires results in large protein molecule binding capacity of the imprinted nanowires.
Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication, characterization and application of pneumatic microvalves and micropumps based on PMMA. Valves and pumps are fabricated by sandwiching a PDMS membrane between PMMA fluidic channel and manifold wafers. Valve closing or opening can be controlled by adjusting the pressure in a displacement chamber on the pneumatic layer via a computer regulated solenoid. The valve provides up to 15.4 microL s(-1) at 60 kPa fluid pressure and seals reliably against forward fluid pressure as high as 60 kPa. A PMMA diaphragm pump can be assembled by simply connecting three valves in series. By varying valve volume or opening time, pumping rates ranging from nL to microL per second can be accurately achieved. The PMMA based valves and pumps were further tested in a disposable automatic nucleic acid extraction microchip to extract DNA from human whole blood. The DNA extraction efficiency was about 25% and the 260 nm/280 nm UV absorption ratio for extracted DNA was 1.72. Because of its advantages of inexpensive, facile fabrication, robust and easy integration, the PMMA valve and pump will find their wide application for fluidic manipulation in portable and disposable microfluidic devices.
In this report, we describe the synthesis of a molecularly imprinted polymer (MIP) nanotube membrane, using a porous anodic alumina oxide (AAO) membrane by surface-initiated atom transfer radical polymerization (ATRP). The use of a MIP nanotube membrane in chemical separations gives the advantage of high affinity and selectivity. Furthermore, because the molecular imprinting technique can be applied to different kinds of target molecules, ranging from small organic molecules to peptides and proteins, such MIP nanotube membranes will considerably broaden the application of nanotube membranes in chemical separations and sensors. This report also shows that the ATRP route is an efficient procedure for the preparation of molecularly imprinted polymers. Furthermore, the ATRP route works well in its formation of MIP nanotubes within a porous AAO membrane. The controllable nature of ATRP allows the growth of a MIP nanotube with uniform pores and adjustable thickness. Thus, using the same route, it is possible to tailor the synthesis of MIP nanotube membranes with either thicker MIP nanotubes for capacity improvement or thinner nanotubes for efficiency improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.