All‐solid‐state batteries are promising candidates for the next‐generation safer batteries. However, a number of obstacles have limited the practical application of all‐solid‐state Li batteries (ASSLBs), such as moderate ionic conductivity at room temperature. Here, unlike most of the previous approaches, superior performances of ASSLBs are achieved by greatly reducing the thickness of the solid‐state electrolyte (SSE), where ionic conductivity is no longer a limiting factor. The ultrathin SSE (7.5 µm) is developed by integrating the low‐cost polyethylene separator with polyethylene oxide (PEO)/Li‐salt (PPL). The ultrathin PPL shortens Li+ diffusion time and distance within the electrolyte, and provides sufficient Li+ conductance for batteries to operate at room temperature. The robust yet flexible polyethylene offers mechanical support for the soft PEO/Li‐salt, effectively preventing short‐circuits even under mechanical deformation. Various ASSLBs with PPL electrolyte show superior electrochemical performance. An initial capacity of 135 mAh g−1 at room temperature and the high‐rate capacity up to 10 C at 60 °C can be achieved in LiFePO4/PPL/Li batteries. The high‐energy‐density sulfur cathode and MoS2 anode employing PPL electrolyte also realize remarkable performance. Moreover, the ASSLB can be assembled by a facile process, which can be easily scaled up to mass production.
Figure 3. a) N 1s and b) F 1s XPS spectra of SEI formed on the PDDA-TFSI@Cu, poly(EVIm-TFSI)@Cu, PDMA-TFSI@Cu, and bare Cu electrodes. c) Nucleation overpotentials of Li deposition on bare Cu electrode and the PIL-coated electrodes. d) Coulombic efficiency of Li/Cu half-cells using the bare Cu electrode and the PIL-coated electrodes at 0.5 mA cm −2 with a plating capacity of 1 mAh cm −2. e,f) Potential profiles of various electrodes at the 50th (e) and 100th (f) cycles.
Solid–solid reactions are very effective for solving the main challenges of lithium–sulfur (Li–S) batteries, such as the shuttle effect of polysulfides and the high dependence of electrolyte consumption. However, the low sulfur content and sluggish redox kinetics of such cathodes dramatically limit the practical energy density of Li–S batteries. Here a rationally designed hierarchical cathode to simultaneously solve above‐mentioned challenges is reported. With nanoscale sulfur as the core, selenium‐doped sulfurized polyacrylonitrile (PAN/S7Se) as the shell and micron‐scale secondary particle morphology, the proposed cathode realizes excellent solid–solid reaction kinetics in a commercial carbonate electrolyte under high active species loading and a relatively low electrolyte/sulfur ratio. Such an approach provides a promising solution toward practical lithium sulfur batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.