Brain metastasis often has a poor prognosis in patients with advanced non-small cell lung cancer (NSCLC). Therefore, it is urgent to identify factors associated with lung cancer brain metastasis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) also known as noncoding nuclear-enriched abundant transcript 2 is a long noncoding RNA, which is highly conserved amongst mammals. It has been shown to be increased in a variety of tumors including NSCLC and regulate the expression of metastasis-associated genes. However, the role of MALAT1 in lung cancer brain metastasis has not been investigated. In this study, we examined the level of MALAT1 in 78 cases of NSCLC samples with 19 brain metastasis and 59 non-brain metastasis by qRT-PCR. We observed that the level of MALAT1 was significantly higher in brain metastasis than that of non brain metastasis samples (P < 0.001). The level of MALAT1 was associated with patients' survival. To investigate the role of MALAT1 in brain metastasis, we established a highly invasive and metastatic cell subline using the brain metastasis lung cancer cell H1915. We found that MALAT1 is increased in highly invasive subline of brain metastasis lung cancer cells. Further functional studies indicate that silencing MALAT1 inhibits highly invasive subline of brain metastasis lung cancer cell migration and metastasis by inducing epithelial-mesenchymal transition (EMT). Therefore, increased level of long noncoding RNA MALAT1 promotes lung cancer brain metastasis by inducing EMT, which may be a promising prognosis factor and therapeutic target to treat lung cancer brain metastasis in future.
In previously untreated, advanced NSCLC patients, treatment with TC plus endostar seemed to improve ORR. However, the differences in PFS or OS between the two groups were not statistically significant. Treatment with TC plus endostar exhibited a good safety profile.
M alignant gliomas are the most common type of primary malignant brain tumor, and more than half of all gliomas are glioblastomas (Grade IV astrocytoma), one of the most aggressive and lethal types of brain tumor. Glioblastoma cells easily infiltrate into the normal cerebral cortex, ultimately resulting in the death of the patient. Well-defined risk factors for glioblastoma include radiation exposure and certain genetic syndromes. 21Several molecular and genomic datasets have recently been generated that have allowed identification of at least 4 subtypes of glioblastoma: classical, mesenchymal, proneural, and neural.14 Previous studies in glioblastoma geabbreviatioNs FBS = fetal bovine serum; HCC = hepatocellular carcinoma; HUVEC = human umbilical vein endothelial cell; lncRNA = long noncoding RNA; ncRNA = noncoding RNA; RT-qPCR = real-time quantitative reverse transcription polymerase chain reaction; SD = standard deviation. 3 Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing; and 4 Department of Oncology, The Second Affiliated Hospital of Suzhou University, Suzhou, China obJective Increased levels of H19 long noncoding RNA (lncRNA) have been observed in many cancers, suggesting that overexpression of H19 may be important in the development of carcinogenesis. However, the role of H19 in human glioblastoma is still unclear. The object of this study was to examine the level of H19 in glioblastoma samples and investigate the role of H19 in glioblastoma carcinogenesis. methods Glioblastoma and nontumor brain tissue specimens were obtained from tissue obtained during tumor resection in 30 patients with glioblastoma. The level of H19 lncRNA was detected by real-time quantitative reverse transcription polymerase chain reaction. The role of H19 in invasion, angiogenesis, and stemness of glioblastoma cells was then investigated using commercially produced cell lines (U87 and U373). The effects of H19 overexpression on glioblastoma cell invasion and angiogenesis were detected by in vitro Matrigel invasion and endothelial tube formation assay. The effects of H19 on glioblastoma cell stemness and tumorigenicity were investigated by neurosphere formation and an in vivo murine xenograft model. results The authors found that H19 is significantly overexpressed in glioblastoma tissues, and the level of expression was associated with patient survival. In the subsequent investigations, the authors found that overexpression of H19 promotes glioblastoma cell invasion and angiogenesis in vitro. Interestingly, H19 was also significantly overexpressed in CD133 + glioblastoma cells, and overexpression of H19 was associated with increased neurosphere formation of glioblastoma cells. Finally, stable overexpression of H19 was associated with increased tumor growth in the murine xenograft model. coNclusioNs The results of this study suggest that increased expression of H19 lncRNA promotes invasion, angiogenesis, stemness, and tumorigenicity of glioblastoma cells. Taken together, the...
Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer.
The applications of liquid biopsy have attracted much attention in biomedical research in recent years. Circulating cell-free DNA (cfDNA) in the serum may serve as a unique tumor marker in various types of cancer. Circulating tumor DNA (ctDNA) is a type of serum cfDNA found in patients with cancer and contains abundant information regarding tumor characteristics, highlighting its potential diagnostic value in the clinical setting. However, the diagnostic value of cfDNA as a biomarker, especially circulating HPV DNA (HPV cDNA) in cervical cancer remains unclear. Here, we performed a meta-analysis to evaluate the applications of HPV cDNA as a biomarker in cervical cancer. A systematic literature search was performed using PubMed, Embase, and WANFANG MED ONLINE databases up to March 18, 2019. All literature was analyzed using Meta Disc 1.4 and STATA 14.0 software. Diagnostic measures of accuracy of HPV cDNA in cervical cancer were pooled and investigated. Fifteen studies comprising 684 patients with cervical cancer met our inclusion criteria and were subjected to analysis. The pooled sensitivity and specificity were 0.27 (95% confidence interval [CI], 0.24-0.30) and 0.94(95% CI, 0.92-0.96), respectively. The pooled positive likelihood ratio and negative likelihood ratio were 6.85 (95% CI, 3.09-15.21) and 0.60 (95% CI, 0.46-0.78), respectively. The diagnostic odds ratio was 15.25 (95% CI, 5.42-42.94), and the area under the summary receiver operating characteristic curve was 0.94 (95% CI, 0.89-0.99). There was no significant publication bias observed. In the included studies, HPV cDNA showed clear diagnostic value for diagnosing and monitoring cervical cancer. Our metaanalysis suggested that detection of HPV cDNA in patients with cervical cancer could be used as a noninvasive early dynamic biomarker of tumors, with high specificity and moderate sensitivity. Further large-scale prospective studies are required to validate the factors that may influence the accuracy of cervical cancer diagnosis and monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.