In the dense medium separation system of coal preparation plant, the fluctuation of raw coal ash and lag of suspension density adjustment often causes the instability of product quality. To solve this problem, this study established a suspension density prediction model for the dense medium separation system based on Long Short-Term Memory (LSTM). First, the historical data in the dense medium separation system of a coal preparation plant were collected and preprocessed. Moving average and cubic exponential smoothing methods were used to replace abnormal data and to fill in the missing data, respectively. Second, a LSTM network was used to construct the density prediction model, and the optimal number of time steps, hidden layers, and nodes was determined. Finally, the model was employed on a testing set for prediction, and a Back-Propagation (BP) network without a time series was used for comparison. Root Mean Squared Error (RMSE) were the minimum when the number of the hidden layers, nodes, and time steps was 6, 12, and 5, respectively. In this case, the RMSE and Mean Absolute Percent Error (MAPE) of the LSTM method were 0.009 and 0.007, respectively, while those of the BP method were 0.019 and 0.015, respectively. Therefore, the model established using LSTM can be used to accurately predict the suspension density of the dense medium separation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.