As an erosional landform, the formation processes of Danxia landform are controlled by internal and external forces as well as lithologic properties. Using field data, we studied the role of lithologic properties on the formation of Danxia landform in Kongtongshan National Geopark, northwest China, through a series of experiments, including uniaxial compressive strength, identification analysis under polarizing microscope, X-ray diffraction analysis, inductively coupled plasma-mass spectrometry analysis, and scanning electron microscopy. The results show that the diagenesis degree, mineral composition, cement composition, degree of cementation, geochemical composition and element contents, and micro-structure influenced the structure and anti-weathering and anti-erosion abilities of the Danxia rock mass. Differential weathering of rock in different environments was an important force shaping the different types of Danxia landform. Weathering failure of the Danxia rock mass was the result of multiple combined factors; as well as lithology, other factors, such as those induced during tectonic uplift (i.e., faulting, jointing, and fracturing) and climate, cannot be neglected. Therefore, lithology played an important role in the structural development of Danxia landform, and different lithologies influenced its weathering rate and formation processes. Our findings can provide a reference for revealing the microscopic development of Danxia landform in arid and semi-arid areas.
Cavernous weathering is commonly found on sandstone slopes in different environments. Either a single dominant process or polygenetic agents require to be invoked in order to interpret the development. The Yongningshan hill of the central Loess Plateau is representative of cliff dwellings in Northwest China, which is characterized by welldeveloped cavernous weathering features and provides a good opportunity for the better understanding of sandstone weathering in the Loess Plateau. Multiple methods, including field survey, in-situ rock strength measurement, along with experiments on samples for microscopic observation, element composition and salt chemistry, were employed to investigate the controlling factors of cavernous weathering. The results show that cavern development is different on the four slopes with the western slope hosting massive honeycombs, tafoni and hardened surfaces. The porous and permeable aeolian sandstones are fundamental, because they provide space and pathways for the transportation of water and salt, honeycombs dominantly aligning within the lamination of cross-beds. The environmental factors such as the seasonal wetting and drying cycle, aeolian salt, moisture and water vapor are key factors for the development of cavernous weathering forms. The northern and northwestern wind-blown dust storms have brought abundant salts, the lengthier dry periods of the wetting and drying cycle being beneficial for salt accumulation within caverns, favoring salt weathering.
The rational and effective application of digital technology to the field of agricultural production, so as to promote the digital transformation of agricultural production, is a key measure for China to move from a large agricultural country to an agricultural power. However, China is still facing many difficulties and obstacles in the process of implementing this initiative, and it is urgent to study and develop targeted solutions to overcome difficulties and overcome obstacles. By studying the current situation of agricultural digitalization development in Anhui Province, this paper finds the problems existing in the process of agricultural digitalization in Anhui Province. Based on this premise, this paper further studies the implementation logic of agricultural digital development and transformation in Anhui Province, so as to put forward the theoretical implementation logic of the digital transformation of agricultural production in Anhui Province, and provide effective suggestions for the digital transformation of agricultural production in Anhui Province.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.