Background BALB/c and C57BL/6 mouse strains are commonly used in allergy research. The current study investigated the immunological differences between these two mouse strains with a locally allergic rhinitis model. Methods Eighteen BALB/c and eighteen C57BL/6 mice received different doses of ovalbumin (OVA) intranasally for eight weeks (each mouse strain has three subgroups, 25 mg/mL group, 0.25 mg/mL group, and the PBS group). The allergic symptoms, OVA-specific serum antibody (IgE, IgG1, IgG2a), cytokines (IL-4, IFN-γ, IL-10) in the splenic culture supernatant, infiltrating eosinophils and goblet cells in local nasal mucosa were measured. RNA-seq technology was applied to detect differential gene expression in the local nasal mucosa. Results With the same dose of OVA stimulation, the exacerbation of allergic symptoms was more pronounced in C57BL/6 than in BALB/c. BALB/c serum IgE, IgG1, and IgG2a gradually increased, and C57BL/6 produced fewer serum antibodies IgE and IgG1, while IgG2a never increased. BALB/c spleen cell culture supernatant IL-4 and IL-10 increased with increasing dose, and IFN-γ increased significantly in the intermediate dose group, while IL-4, IL-10, and IFN-γ did not increase in C57BL/6. The infiltration of eosinophils and goblet cells in both mice was proportional to the dose, while C57BL/6 was elevated more than BALB/c. RNA-seq suggested that the innate immune response, immune system process function, Jun kinase (JNK) pathway, and MAPKK pathway were upregulated in C57BL/6 compared to BALB/c. The core genes responsible for the differential immune response in both mice with allergic rhinitis were Kng2, Kng1, Gnb3, Lpar3, Lpar1, Pik3r1, Pf4, Apob, Rps9, and Fbxo2. Conclusion There are significant differences in the immunologic responses between BALB/c mice and C57BL/6 mice. BALB/c mice developed mild local allergic inflammatory reactions and strong systemic immune responses. In contrast, C57BL/6 mice had stronger local allergic inflammatory responses and relatively mild systemic immune responses. Different mice strains can be selected according to the research purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.