With unceasing increase of mining depth and development intensity, mining disasters such as rock burst have been increasing frequently, which often result in catastrophic accidents. Therefore, it is imperative to accurately forecast underground disasters. Previous research has suggested that the combination of drill-hole pressure relief and acoustic emission (AE) monitoring serves as an effective measure method towards the forecasting and prevention of disastrous accidents. However, the AE evolution mechanism of underground rock damages remains a challenge; more specifically, the relationships among the drilling hole positions, depths and diameters, and the stress–strain and AE characteristics of the rocks are discussed little in the literature. In order to bridge this research gap, the particle flow code (PFC2D) is employed to systemically investigate the hidden patterns among the mechanical properties, AE and damage evolution of the rock mass with different positions, depths and diameters of the drilling holes. Analysis results demonstrate that the drilling position influences the rock stress–strain and AE characteristics in the plastic deformation stage and the residual stage while the hole depth affects the drilling process. More specifically, the initial AE strength, AE impact at the peak moment, AE fluctuations and induction time are significantly influenced by the drilling position and depth. Furthermore, the drilling position and depth change the evolution law in the damage acceleration and stable development stages, while the hole diameter has little effect on the AE signal during the rock drilling process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.