Metastatic cancer especially bone metastasis (BM) is the lethal end-stage of castration-resistant prostate cancer (CRPC). To understand the possible molecular mechanisms underlying the development of the distant metastasis is of potential clinical value. We sought to identify differentially expressed genes between patient-matched primary and bone metastatic CRPC tumors. Functional enrichment, protein-protein interaction networks, and survival analysis of DEGs were performed. DEGs with a prognostic value considered as candidate genes were evaluated, followed by genetic analysis of tumor infiltrating immune cells based on Wilcoxon test and immunofluorescence identification. Expression profiles analysis showed that 381 overlapping genes were screened as differentially expressed genes (DEGs), of which 16 DEGs were randomly selected to be validated and revealed that most of these genes showed a transcriptional profile similar to that seen in the datasets (Pearson’s r = 0.76). Six core genes were found to be involved in regulation of extracellular matrix receptor interaction and chemotactic activity, and four of them were significantly correlated with the survival of PCa patients with bone metastases. Immune infiltration analysis showed that the expressions levels of COL3A1, RAC1, FN1, and SDC2 in CD4+T cells were significantly higher than those in tumor cells, especially regulatory T cell infiltration was significantly increased in BM tumors. We analyzed gene expression signatures specifically associated with the development of bone metastases of CRPC patients. Characterization of genes associated with BM of mCRPC is critical for identification of predictive biomarkers and potential therapeutic targets.
Docetaxel is a first-line anticancer drug widely used in the treatment of advanced prostate cancer. However, its therapeutic efficacy is limited by its side effects and the development of chemoresistance by the tumor. Using a gene differential expression microarray, we identified 449 genes differentially expressed in docetaxel-resistant DU145 and PC3 cell lines as compared to docetaxel-sensitive controls. Moreover, western blotting and immunohistochemistry revealed altered expression of S100A4, ACKR3 and CDH1in clinical tumor samples. Cytoscape software was used to investigate the relationship between critical proteins and their signaling transduction networks. Functional and pathway enrichment analyses revealed that these signaling pathways were closely related to cellular proliferation, cell adhesion, cell migration and metastasis. In addition, ACKR3 knockout using the crispr/cas9 method andS100A4knockdownusing targeted shRNA exerted additive effects suppressing cancer cell proliferation and migration. This exploratory analysis provides information about potential candidate genes. It also provides new insight into the molecular mechanism underlying docetaxel-resistance in androgen-independent prostate cancer and highlights potential targets to improve therapeutic outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.