Glioma is one of the most common brain tumors, suggesting the importance of investigating the molecular mechanism of gliomas. We studied the roles of Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in glioma. Expressions of RRM2 are higher in glioma tissues evidenced by TCGA data, western blot and immunohistochemistry. RRM2 is negatively correlated with glioma patient's survival. RNA-seq showed that genes involved in apoptosis, proliferation, cell adhesion and negative regulation of signaling were up-regulated upon RNAi-mediated knock-down of RRM2. Cell phenotypes specific for stably knocking down RRM2 were determined using stable transfection in vitro. In an in vivo model, knock-down of RRM2 inhibited tumor growth and caused suppression of AKT and ERK1/2 signalings. Interfering RRM2 also down-regulated the expression of cyclin A, cyclin B1, cyclin D1, Vimentin, and N-cadherin, and elevated E-cadherin expression. Moreover, overexpression of RRM2 failed to increase the expression of cyclin B1, cyclin D1, and N-cadherin when phosphorylation of AKT and ERK1/2 was suppressed by LY294002 or PD98059. These findings indicated that RRM2 is a positive regulator of glioma progression which contributes to the migration and proliferation of glioma cells through ERK1/2 and AKT signalings and might be a novel prognostic indicator for glioma patients.
Multiple studies demonstrated that sepsis is a life‐threatening state of organ dysfunction caused by infection and can induce neuroinflammation and cognitive impairment. The aim of this study was to evaluate the protective effects of attractylone (Atr) on sepsis‐associated encephalopathy (SAE) and cognitive dysfunction. Moreover, we studied the underlying molecular mechanisms. We used an LPS‐induced sepsis mouse model and evaluated the cognitive function with the Morris water maze and open field test. Neuronal damage in the hippocampus was assessed by immunohistochemical analysis. BV2 cells were used to identify the protective mechanism of Atr. The result showed that Atr attenuated LPS‐induced cognitive impairment, neural apoptosis, inflammatory factors, and microglial activation. The in vitro experiment showed that Atr promoted silent information regulator 1 (SIRT1) expression and suppressed NFκB expression. Downregulation of SIRT1 reversed the protective effect of Atr in the LPS condition. Moreover, Atr‐induced SIRT1 expression promoted BV2 from LPS‐induced M1 to M2 phenotype. Taken together, these results indicated that Atr was a potential therapeutic agent for SAE and cognitive dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.