Background Influenza is an acute respiratory infectious disease that is highly infectious and seriously damages human health. Reasonable prediction is of great significance to control the epidemic of influenza. Methods Our Influenza data were extracted from Shanxi Provincial Center for Disease Control and Prevention. Seasonal-trend decomposition using Loess (STL) was adopted to analyze the season characteristics of the influenza in Shanxi Province, China, from the 1st week in 2010 to the 52nd week in 2019. To handle the insufficient prediction performance of the seasonal autoregressive integrated moving average (SARIMA) model in predicting the nonlinear parts and the poor accuracy of directly predicting the original sequence, this study established the SARIMA model, the combination model of SARIMA and Long-Short Term Memory neural network (SARIMA-LSTM) and the combination model of SARIMA-LSTM based on Singular spectrum analysis (SSA-SARIMA-LSTM) to make predictions and identify the best model. Additionally, the Mean Squared Error (MSE), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to evaluate the performance of the models. Results The influenza time series in Shanxi Province from the 1st week in 2010 to the 52nd week in 2019 showed a year-by-year decrease with obvious seasonal characteristics. The peak period of the disease mainly concentrated from the end of the year to the beginning of the next year. The best fitting and prediction performance was the SSA-SARIMA-LSTM model. Compared with the SARIMA model, the MSE, MAE and RMSE of the SSA-SARIMA-LSTM model decreased by 38.12, 17.39 and 21.34%, respectively, in fitting performance; the MSE, MAE and RMSE decreased by 42.41, 18.69 and 24.11%, respectively, in prediction performances. Furthermore, compared with the SARIMA-LSTM model, the MSE, MAE and RMSE of the SSA-SARIMA-LSTM model decreased by 28.26, 14.61 and 15.30%, respectively, in fitting performance; the MSE, MAE and RMSE decreased by 36.99, 7.22 and 20.62%, respectively, in prediction performances. Conclusions The fitting and prediction performances of the SSA-SARIMA-LSTM model were better than those of the SARIMA and the SARIMA-LSTM models. Generally speaking, we can apply the SSA-SARIMA-LSTM model to the prediction of influenza, and offer a leg-up for public policy.
Background: Influenza is an acute respiratory infectious disease that is highly infectious and seriously damages human health. Reasonable prediction is of great significance to control the epidemic of influenza. Methods: Our Influenza data were extracted from Shanxi Provincial Center for Disease Control and Prevention. Seasonal-trend decomposition using Loess (STL) was adopted to analyze the season characteristics of the influenza in Shanxi Province, China, from the 1st week in 2010 to the 52nd week in 2019. To handle the insufficient prediction performance of the seasonal autoregressive integrated moving average (SARIMA) model in predicting the nonlinear parts and the poor accuracy of directly predicting the original sequence, this study established the SARIMA model, the combination model of SARIMA and Long-Short Term Memory neural network (SARIMA-LSTM) and the combination model of SARIMA-LSTM based on Singular spectrum analysis (SSA-SARIMA-LSTM) to make predictions and identify the best model. Additionally, the Mean Squared Error (MSE), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to evaluate the performance of the models. Results: The influenza time series in Shanxi Province from the 1st week in 2010 to the 52nd week in 2019 showed a year-by-year decrease with obvious seasonal characteristics. The peak period of the disease mainly concentrated from the end of the year to the beginning of the next year. The best fitting and prediction performance was the SSA-SARIMA-LSTM model. Compared with the SARIMA model, the MSE, MAE and RMSE of the SSA-SARIMA-LSTM model decreased by 38.12, 17.39 and 21.34%, respectively, in fitting performance; the MSE, MAE and RMSE decreased by 42.41, 18.69 and 24.11%, respectively, in prediction performances. Furthermore, compared with the SARIMA-LSTM model, the MSE, MAE and RMSE of the SSA-SARIMA-LSTM model decreased by 28.26, 14.61 and 15.30%, respectively, in fitting performance; the MSE, MAE and RMSE decreased by 36.99, 7.22 and 20.62%, respectively, in prediction performances. Conclusions: The fitting and prediction performances of theSSA-SARIMA-LSTM model were better than those of the SARIMA and theSARIMA-LSTM models. Generally speaking, we can apply the SSA-SARIMA-LSTM model to the prediction of influenza, and offer a leg-up for public policy.
Diabetes mellitus (DM) has become the third chronic non-infectious disease affecting patients after tumor, cardiovascular and cerebrovascular diseases, becoming one of the major public health issues worldwide. Detection of early warning risk factors for DM is key to the prevention of DM, which has been the focus of some previous studies. Therefore, from the perspective of residents' self-management and prevention, this study constructed Bayesian networks (BNs) combining feature screening and multiple resampling techniques for DM monitoring data with a class imbalance in Shanxi Province, China, to detect risk factors in chronic disease monitoring programs and predict the risk of DM. First, univariate analysis and Boruta feature selection algorithm were employed to conduct the preliminary screening of all included risk factors. Then, three resampling techniques, SMOTE, Borderline-SMOTE (BL-SMOTE) and SMOTE-ENN, were adopted to deal with data imbalance. Finally, BNs developed by three algorithms (Tabu, Hill-climbing and MMHC) were constructed using the processed data to find the warning factors that strongly correlate with DM. The results showed that the accuracy of DM classification is significantly improved by the BNs constructed by processed data. In particular, the BNs combined with the SMOTE-ENN resampling improved the most, and the BNs constructed by the Tabu algorithm obtained the best classification performance compared with the hill-climbing and MMHC algorithms. The best-performing joint Boruta-SMOTE-ENN-Tabu model showed that the risk factors of DM included family history, age, central obesity, hyperlipidemia, salt reduction, occupation, heart rate, and BMI.
To handle the difficulties of modeling and prediction caused by the abnormal influenza sequence during COVID-19, this study established a hybrid prediction model of Long-Short Term Memory neural network (LSTM) and seasonal autoregressive integrated moving average (SARIMA) based on Singular spectrum analysis (SSA), which provided an effective scientific basis for the high-precision prediction of influenza in Shanxi Province during the COVID-19. Seasonal-trend decomposition using Loess (STL) was adopted to analyze the season characteristics of the ratio of weekly influenza-like illness (ILI) patients in Shanxi Province, China, from the 14th week in 2010 to the 13th week in 2021. The SARIMA model, the LSTM model and the LSTM-SARIMA hybrid model based on SSA were established to predict the influenza in Shanxi Province during the COVID-19. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to evaluate the performance of the models. Affected by the COVID-19, the influenza time sequence in Shanxi Province has been complicated since the beginning of 2020, with the peak incidence much lower than before. Compared with those of the SARIMA model, the MAE and MAPE of the LSTM-SARIMA hybrid model based on SSA decreased by 28.9 and 32.2%, respectively, in fitting performance; in terms of prediction performances, the MAE and MAPE decreased by 52.5 and 52.1%, respectively. Compared with those of the LSTM model, the MAE and MAPE of the LSTM-SARIMA hybrid model based on SSA decreased by 26.2 and 27.5%, respectively, in fitting performance; in terms of prediction performances, the MAE and MAPE decreased by 35.0 and 35.3%, respectively. The fitting and prediction performances of the LSTM-SARIMA hybrid model based on SSA were better than those of the SARIMA and the LSTM models. Generally speaking, we can apply the LSTM-SARIMA hybrid model based on SSA to the prediction of influenza during the COVID-19, and offer a leg-up for public policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.