Multilevel Cell Spin-Transfer Torque Random Access Memory (MLC STT-RAM) is a promising nonvolatile memory technology to build registers for its natural immunity to electromagnetic radiation in rad-hard space environment. Unlike traditional SRAM-based registers, MLC STT-RAM exhibits unbalanced write state transitions due to the fact that the magnetization directions of hard and soft domains cannot be flipped independently. This feature leads to nonuniform costs of write states in terms of latency and energy. However, current SRAM-targeting register allocations do not have a clear understanding of the impact of the different write state-transition costs. As a result, those approaches heuristically select variables to be spilled without considering the spilling priority imposed by MLC STT-RAM. Aiming to address this limitation, this paper proposes a state-transition-aware spilling cost minimization (SSCM) policy, to save power when MLC STT-RAM is employed in register design. Specifically, the spilling cost model is first constructed according to the linear combination of different state-transition frequencies. Directed by the proposed cost model, the compiler picks up spilling candidates to achieve lower power and higher performance. Experimental results show that the proposed SSCM technique can save energy by 19.4% and improve the lifetime by 23.2% of MLC STT-RAM-based register design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.