Plants rely on the perception of a multitude of herbivory-associated cues (HACs) to activate their defense response to insect herbivores. These stimuli are mainly derived from three functional components, namely, mechanical damage, insect-associated microbe, and insect’s chemical cues. While simulated herbivory integrating these stimuli is widely exploited for complementing actual herbivory in clarifying the details of plant–herbivore interaction, breaking down these stimuli and identifying the mechanisms of plant responses associated with them have been less explored. In this study, the components of potato tuber moth (Phthorimaea operculella, PTM) herbivory were reorganized in a cumulative way and their impacts on the early defense responses of potato leaf were characterized. We found that simulated and actual herbivory of PTM triggered similar patterns of phytohormonal and transcriptomic responses in potato leaf. Moreover, the microbe in the PTM herbivory stimuli is associated with the regulation of the phytohormones jasmonic acid (JA) and abscisic acid (ABA) since reducing the microbe in HAC could reduce JA while increasing ABA. In addition, seven robust gene modules were identified to illustrate how potato plants respond to different PTM herbivory stimuli when herbivory components increased. Significantly, we found that mechanical damage mainly activated JA-mediated signaling; PTM-derived HACs contributed much more to potato early-defense response and induced signaling molecules such as multiple protein kinases; orally secreted bacteria stimuli could antagonize PTM-derived HACs and modulate plant defense, including repressing phenylpropanoid biosynthesis. Our study broadened the understanding of how potato plants integrate the responses to a multitude of stimuli upon PTM herbivory and evidenced that insect-associated microbes greatly modulated the plants response to insect herbivory.
Breast cancer type 1 sensitive protein (BRCA1) is a well-known tumor suppressor and its role in oxidative stress has been confirmed. The purpose of this study is to evaluate whether paeonol has a protective effect on myocardial hypoxia-reoxygenation (A/R) injury, and to explore H9C2 cells through a mechanismdependent pathway mediated by BRCA1. H9C2 cells were pretreated with paeonol (10 µM) for 18 h before hypoxia was induced to establish a cell model of myocardial ischemia/reperfusion (I/R) injury. Use commercial kits to detect antioxidant indicators, including relative oxygen content (ROS) levels, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), lactate dehydrogenase (LDH) activity, and creatine kinase (CK-MB) and nuclear factor-kappaB (NF-κB) activity. The cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction method. Real-time fluorescent quantitative PCR was used to detect BRCA1 mRNA and protein levels. The expression levels of BRCA1, NLRP3 and ACS were determined by Western blotting. In addition, the release of interleukin (IL)-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) was also evaluated by an enzyme-linked immunosorbent assay (ELISA) kit. The results showed that paeonol (10 µM) can significantly improve the hypoxic A/R damage of H9C2 cells, and the BRCA1 expression of H9C2 cells pretreated with paeonol was significantly increased before A/R damage was induced. BRCA1 is widely known in breast and ovarian cancer. Our data proves that the down-regulation of BRCA1 participates in the decrease of cell viability and the decrease of CK-MB and LDH activities, and protects cells by inhibiting the production of ROS and the activation of Nod-like receptor protein 3 (NLRP3) inflammasomes and NF-κB. In conclusion, paeonol significantly improved the A/R damage of H9C2 cells induced by hypoxia through the BRCA1/ROS-regulated NLRP3 inflammasome/IL-1β and NF-κB/TNF-α/IL-6 pathways. It may be a potential drug against myocardial I/R injury.
Potato, a cool-weather crop, emits volatile organic compounds (VOCs) which attract the specialist herbivore, Phthorimaea operculella, but also this herbivore's parasitic wasp, Trichogramma chilonis, an important biocontrol agent. What happens to this trophic system when heat stress challenges this agro-ecosystem? We studied how high temperature (HT) pre-treatments influence potato's VOC emissions and their subsequent effects on the preferences of insects, as evaluated in oviposition assays and Y-tube olfactometers. HT pre-stressed plants were less attractive to P. operculella adult moths, which were repelled by HT VOCs, but increased the recruitment of the parasitoid, T. chilonis, which were attracted. VOC emissions, including the most abundant constituent, ß-caryophyllene, were enhanced by HT treatments; some constituents elicited stronger behavioural responses than others.Transcripts of many genes in the biosynthetic pathways of these VOCs were significantly enhanced by HT treatment, suggesting increases in de novo biosynthesis. HT increased the plant's stomatal apertures, and exogenous applications of the hormone, ABA, known to suppress stomatal apertures, reduced leaf volatile emissions and affected the HT-altered plant attractions to both insects.From these results, we infer that HT stress affects this plant-insect interaction through its influence on VOC emissions, potentially decreasing herbivore ovipositions while increasing ovipositions of the parasitoid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.