Hydroxyapatite (HA) doped with trace elements has attracted much attention recently owing to its excellent biological functions. Herein, we use a facile co-precipitation method to incorporate selenium into HA by adding sodium selenite during synthesis. The obtained selenium-substituted HA products are needle-like nanoparticles which have size and crystallinity that are similar to those of the pure HA nanoparticles (HANs) when the selenium content is low. HANs are found to have the ability to induce the apoptosis of osteosarcoma cells, and the anti-tumour effects are enhanced after incorporation of selenium. Meanwhile, the nanoparticles can also support the growth of bone marrow stem cells. Furthermore, the flow cytometric results indicate that the apoptosis induction of osteosarcoma cells is caused by the increased reactive oxygen species and decreased mitochondrial membrane potential. These results show that the selenium-substituted HANs are potentially promising bone graft materials in osteosarcoma treatment due to their dual functions of supporting normal cell growth and inducing tumour cell apoptosis.
Titanium (Ti) alloy implants can repair bone defects at load-bearing sites. However, they mechanically mismatch with the natural bone and lack customized adaption with the irregularly major-sized load-bearing bone defects, resulting in the failure of implant fixation. Mineralized collagen (MC), a building block in bone, can induce angiogenesis and osteogenesis, and 3D printing technology can be employed to prepare scaffolds with an overall shape customized to the bone defect. Hence, we induced the formation of MC, made of hydroxyapatite (HAp) nanocrystals and collagen fibers, in 3D-printed porous Ti6Al4V (PT) scaffolds through in situ biomimetic mineralization. The resultant MC/PT scaffolds exhibited a bone-like Young’s modulus and were customized to the anatomical contour of actual bone defects of rabbit model. We found that the biocompatibility and osteogenic differentiation are best when the mass ratio between HAp nanocrystals and collagen fibers is 1 in MC. We then implanted the MC/PT scaffolds into the customized radius defect rabbit model and found that the MC/PT scaffolds significantly improved the vascularized bone tissue formation and integration between new bone and the implants. Therefore, a combination of 3D printing and biomimetic mineralization could lead to customized 3D PT scaffolds for enhanced angiogenesis, osteogenesis, and osteointegration. Such scaffolds represent novel patient-specific implants for precisely repairing irregular major-sized load-bearing bone defects.
This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.