Neural networks are widely used in automatic credit scoring systems with high accuracy and outstanding efficiency. However, in the absence of prior knowledge, it is difficult to determine the set of hyper-parameters, which makes its application limited in practice. This paper presents a novel framework of credit-scoring model based on neural networks trained by the optimal swarm intelligence (SI) algorithm. This framework incorporates three procedures. Step 1, pre-processing, including imputation, normalization, and reordering of the samples. Step 2, training, where SI algorithms optimize hyper-parameters of back-propagation artificial neural networks (BP-ANN) with the area under curve (AUC) as the evaluation function. Step 3, test, applying the optimized model in Step 2 to predict new samples. The results show that the framework proposed in this paper searches the hyper-parameter space efficiently and finds the optimal set of hyper parameters with appropriate time complexity, which enhances the fitting and generalization ability of BP-ANN. Compared with existing credit-scoring models, the model in this paper predicts with a higher accuracy. Additionally, the model enjoys a greater robustness, for the difference of performance between training and testing phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.