Diterpenoids isolated from Labiatae family herbs have strong antitumor activities with low toxicity. In this study, Eriocalyxin B (EriB), a diterpenoid extracted from Isodon eriocalyx, was tested on human leukemia/lymphoma cells and murine leukemia models. Acute myeloid leukemia cell line Kasumi-1 was most sensitive to EriB. Significant apoptosis was observed, concomitant with Bcl-2/Bcl-X L downregulation, mitochondrial instability and caspase-3 activation. AML1-ETO oncoprotein was degraded in parallel to caspase-3 activation. EriB-mediated apoptosis was associated with NF-jB inactivation by preventing NF-jB nuclear translocation and inducing IjBa cleavage, and disturbance of MAPK pathway by downregulating ERK1/2 phosphorylation and activating AP-1. Without affecting normal hematopoietic progenitor cells proliferation, EriB was effective on primary t(8;21) leukemia blasts and caused AML1-ETO degradation. In murine t(8;21) leukemia models, EriB remarkably prolonged the survival time or decreased the xenograft tumor size. Together, EriB might be a potential treatment for t(8;21) leukemia by targeting AML1-ETO oncoprotein and activating apoptosis pathways.
BackgroundSmoking is the leading cause of COPD. Exploring molecular markers and understanding the pathogenic mechanisms of smoking-related COPD are helpful for early clinical diagnosis and treatment of the disease. This study aims to identify specific circulating microRNAs (miRNAs) from the blood of COPD patients with a long history of smoking.MethodsBlood samples from four different groups were collected, and miRNA microarray was performed. Differential expression of miRNAs was verified by quantitative polymerase chain reaction. In vitro, THP-1 cells were cultured and stimulated with cigarette smoke extract (CSE) or transfected with miR-149-3p inhibitor/mimics. Protein levels of Toll-like receptor 4 (TLR-4) and nuclear factor κB (NF-κB) were detected using Western blot and immunofluorescence. Interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels were determined by an enzyme-linked immunosorbent assay.ResultsmiRNA profiling revealed that the expression of 56 miRNAs was changed between the four groups. Expression of miR-149-3p in group C (non-smoker non-COPD) was higher than in group S (smoker non-COPD), S-COPD (smoker with stable COPD) and AE-COPD (smoker with acute exacerbation COPD). CSE stimulation down-regulated the expression of miR-149-3p and up-regulated the TLR-4 and NF-κB levels in THP-1 cells. Transfecting miR-149-3p inhibitors in THP-1 cells also increased the expression of its target genes. Furthermore, overexpression of miR-149-3p inhibited the TLR-4/NF-κB signaling pathways and reduced the secretion of IL-1β and TNF-α.ConclusionThis study found that smoking can induce differential expression of circulating miR-NAs, such as down-regulation of miR-149-3p. Reducing miR-149-3p may increase the inflammatory response in COPD patients through the regulation of the TLR-4/NF-κB signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.