Background: Deficient emotion regulation and exaggerated anxiety represent a major transdiagnostic psychopathological marker. On the neural level these deficits have been closely linked to impaired, yet treatment-sensitive, prefrontal regulatory control over the amygdala. Gaining direct control over these pathways could therefore provide an innovative and promising intervention to regulate exaggerated anxiety. To this end the current proof-of-concept study evaluated the feasibility, functional relevance and maintenance of a novel connectivity-informed real-time fMRI neurofeedback training. Methods: In a randomized crossover sham-controlled design, 26 healthy subjects with high anxiety underwent real-time fMRI-guided neurofeedback training to enhance connectivity between the ventrolateral prefrontal cortex (vlPFC) and the amygdala (target pathway) during threat exposure. Maintenance of regulatory control was assessed after 3 days and in the absence of feedback. Training-induced changes in functional connectivity of the target pathway and anxiety ratings served as primary outcomes. Results: Training of the target, yet not the sham control, pathway significantly increased amygdala-vlPFC connectivity and decreased levels of anxiety. Stronger connectivity increases were significantly associated with higher anxiety reduction on the group level. At the follow-up, volitional control over the target pathway was maintained in the absence of feedback. Conclusions: The present results demonstrate for the first time that successful self-regulation of amygdala-prefrontal top-down regulatory circuits may represent a novel intervention to control anxiety. As such, the present findings underscore both the critical contribution of amygdala-prefrontal circuits to emotion regulation and the therapeutic potential of connectivity-informed real-time neurofeedback.
Emotional experience involves an integrated interplay between processing of external emotional cues and interoceptive feedback, and this is impaired in a number of emotional disorders. The neuropeptide oxytocin (OT) enhances the salience of external social cues but its influence on interoception is unknown. The present pharmaco-fMRI study therefore investigated whether OT enhances interoceptive awareness and if it influences the interplay between interoceptive and salience processing. In a randomized, double-blind, between-subject, design study 83 subjects received either intranasal OT or placebo. In Experiment 1, subjects performed a heartbeat detection task alone, while in Experiment 2 they did so while viewing both neutral and emotional face stimuli. Interoceptive accuracy and neural responses in interoceptive and salience networks were measured. In Experiment 1, OT had no significant influence on interoceptive accuracy or associated activity in the right anterior insula (AI) and dorsal anterior cingulate cortex. However, in Experiment 2 when face stimuli were also presented, OT decreased interoceptive accuracy and increased right AI activation and its functional connectivity with the left posterior insula (PI), with the latter both being negatively correlated with accuracy scores. The present study provides the first evidence that while OT does not influence processing of interoceptive cues per se it may switch attention away from them towards external salient social cues by enhancing right AI responses and its control over the PI. Thus OT may help regulate the interplay between interoceptive and external salience processing within the insula and could be of potential therapeutic benefit for emotional disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.