Lanthanide-doped upconversion nanocrystals (UCNCs) have recently become an attractive nonlinear fluorescence material for use in bioimaging because of their tunable spectral characteristics and exceptional photostability. Plasmonic materials are often introduced into the vicinity of UCNCs to increase their emission intensity by means of enlarging the absorption cross-section and accelerating the radiative decay rate. Moreover, plasmonic nanostructures (e.g., gold nanorods, GNRs) can also influence the polarization state of the UC fluorescence—an effect that is of fundamental importance for fluorescence polarization-based imaging methods yet has not been discussed previously. To study this effect, we synthesized GNR@SiO2@CaF2:Yb3+,Er3+ hybrid core–shell–satellite nanostructures with precise control over the thickness of the SiO2 shell. We evaluated the shell thickness-dependent plasmonic enhancement of the emission intensity in ensemble and studied the plasmonic modulation of the emission polarization at the single-particle level. The hybrid plasmonic UC nanostructures with an optimal shell thickness exhibit an improved bioimaging performance compared with bare UCNCs, and we observed a polarized nature of the light at both UC emission bands, which stems from the relationship between the excitation polarization and GNR orientation. We used electrodynamic simulations combined with Förster resonance energy transfer theory to fully explain the observed effect. Our results provide extensive insights into how the coherent interaction between the emission dipoles of UCNCs and the plasmonic dipoles of the GNR determines the emission polarization state in various situations and thus open the way to the accurate control of the UC emission anisotropy for a wide range of bioimaging and biosensing applications.
The synthesis of discrete nanostructures with a strong, persistent, stable plasmonic circular dichroism (PCD) signal is challenging. We report a seed‐mediated growth approach to obtain discrete Au nanorods with high and stable chiroptical responses (c‐Au NRs) in the visible to near‐IR region. The morphology of the c‐Au NRs was governed by the concentration of l‐ or d‐cysteine used. The amino acids encapsulated within the discrete gold nanostructure enhance their PCD signal, attributed to coupling of dipoles of chiral molecules with the near‐field induced optical activity at the hot spots inside the c‐Au NRs. The stability of the PCD signal and biocompatibility of c‐Au NRs was improved by coating with silica or protein corona. Discrete c‐Au NR@SiO2 with Janus or core–shell configurations retained their PCD signal even in organic solvents. A side‐by‐side assembly of c‐Au NRs induced by l‐glutathione led to further PCD signal enhancement, with anisotropic g factors as high as 0.048.
Semiconductor materials have become competitive candidates for surface-enhanced Raman scattering (SERS) substrates; however, their limited SERS sensitivity hinders the practical applications of semiconductors. Here, we develop a hybrid substrate by integrating anatase/rutile TiO 2 heterostructure with dense plasmonic hotspots of Ag nanoparticle (AgNPs) for efficient photoinduced enhanced Raman spectroscopy (PIERS). The PIERS mechanism is systematically investigated by means of a portable Raman instrument. When ultraviolet (UV) light irradiates the substrate, the TiO 2 −Ag hybrid arrays produce remarkable charge-transfer enhancement, which can be ascribed to the highly efficient charge separation driven by heterojunction and transfer from TiO 2 heterostructure to AgNPs. This platform allows for the rapid detection of multifold organic species, including malachite green (MG), crystal violet (CV), rhodamine 6G (R6G), thiram, and acephate, and as high as 27.8-fold enhancement over the normal SERS is achieved, representing the highest PIERS magnification up to the present time. The intensive PIERS enhancement makes it ultrasensitively detect analyte concentration of an order of magnitude lower than that of SERS method. The improved sensitivity and resolution can be readily realized by simple UV irradiation, which represents a major advantage of our PIERS methodology. Besides, the integration of uniform TiO 2 heterostructure arrays with AgNPs generates superior signal reproducibility with relative standard deviation (RSD) value of less than 14%. In addition, the detected molecules on the substrate can be eliminated by photocatalytic degradation after PIERS measurements by using UV irradiation, which makes the substrate reusable for 15 cycles. The ultrahigh sensitivity, superior reproducibility, and excellent recyclability displayed by our platform may provide new opportunities in field detection analysis coupled with a portable Raman instrument.
In this work, we used monolayer graphene, either underneath or on top of the R6G molecules, to enhance the stability and reproducibility of surface enhanced Raman spectroscopy (SERS). The time evolution of characteristic peaks of the organic molecules was monitored using Raman spectroscopy under continuous light irradiation to quantitatively characterize the photostability. Graphene underneath the organic molecules inhibits the substrate-induced fluctuations; and graphene on top of the organic molecules encapsulates and isolates them from ambient oxygen, greatly enhancing the photostability. Our results showed that the average lifespan of R6G molecules with graphene encapsulation can be increased by about 6-fold under high laser power density (3.67 × 10 6 W/cm 2 ) and is less dependent on the power density of light irradiation.
The solid‐phase synthesis of Ag‐coated Fe3O4 microsphere was elaborated under argon atmosphere. This straightforward process utilized neither reducing agents nor electric current and involved the dry mixing of a precursor of CH3COOAg with Fe3O4 microspheres followed by heating in an inert atmosphere. Ag nanoparticles with diameters of 30–50 nm were well‐decorated on the surfaces of Fe3O4 microspheres. The as‐synthesized Ag‐coated Fe3O4 microspheres were assembled into a surface‐enhanced Raman scattering (SERS) substrate holding clean and reproducible properties under an externally exerted magnetic force. Using these nanoprobes, analyte molecules can be easily captured, magnetically concentrated, and analyzed by SERS. This clean SERS substrate was used to detect 4‐aminothiophenol, even at a concentration as low as1.0 × 10–12 M. In particular, the Ag‐coated Fe3O4 microspheres, acting as reproducible SERS substrates, were applied to detect methyl‐parathion and 4‐mercaptopyridine. Strong SERS signals were obtained with the analytes at a concentration of 1.0 × 10–6 M. The unique, clean, and reproducible properties indicate a new route in eliminating the single‐use problem of traditional SERS substrates and show promising applications for detecting other organic pollutants. Similarly, this work may provide a new model system to a series of metal–Fe3O4 decorating reactions for a reproducible utilization. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.