Joint communication and radar sensing (JCR) represents an emerging research field aiming to integrate the above two functionalities into a single system, by sharing the majority of hardware, signal processing modules and, in a typical case, the transmitted signal. The close cooperation of the communication and sensing functions can enable significant improvement of spectrum efficiency, reduction of device size, cost and power consumption, and improvement of performance of both functions. Advanced signal processing techniques are critical for making the integration efficient, from transmission signal design to receiver processing. This paper provides a comprehensive overview of the state-of-the-art on JCR systems from the signal processing perspective. A balanced coverage on both transmitter and receiver is provided for three types of JCR systems, namely, communicationcentric, radar-centric, and joint design and optimization.
For autonomous driving, it is important to detect obstacles in all scales accurately for safety consideration. In this paper, we propose a new spatial attention fusion (SAF) method for obstacle detection using mmWave radar and vision sensor, where the sparsity of radar points are considered in the proposed SAF. The proposed fusion method can be embedded in the feature-extraction stage, which leverages the features of mmWave radar and vision sensor effectively. Based on the SAF, an attention weight matrix is generated to fuse the vision features, which is different from the concatenation fusion and element-wise add fusion. Moreover, the proposed SAF can be trained by an end-to-end manner incorporated with the recent deep learning object detection framework. In addition, we build a generation model, which converts radar points to radar images for neural network training. Numerical results suggest that the newly developed fusion method achieves superior performance in public benchmarking. In addition, the source code will be released in the GitHub.
Joint radar and communication (JRC) technology has become important for civil and military applications for decades. This paper introduces the concepts, characteristics and advantages of JRC technology, presenting the typical applications that have benefited from JRC technology currently and in the future. This paper explores the state-of-the-art of JRC in the levels of coexistence, cooperation, co-design and collaboration. Compared to previous surveys, this paper reviews the entire trends that drive the development of radar sensing and wireless communication using JRC. Specifically, we explore an open research issue on radar and communication operating with mutual benefits based on collaboration, which represents the fourth stage of JRC evolution. This paper provides useful perspectives for future researches of JRC technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.