Dealing with low-light images is a challenging problem in the image processing field. A mature low-light enhancement technology will not only be conductive to human visual perception but also lay a solid foundation for the subsequent high-level tasks, such as target detection and image classification. In order to balance the visual effect of the image and the contribution of the subsequent task, this paper proposes utilizing shallow Convolutional Neural Networks (CNNs) as the priori image processing to restore the necessary image feature information, which is followed by super-pixel image segmentation to obtain image regions with similar colors and brightness and, finally, the Attentive Neural Processes (ANPs) network to find its local enhancement function on each super-pixel to further restore features and details. Through extensive experiments on the synthesized low-light image and the real low-light image, the experimental results of our algorithm reach 23.402, 0.920, and 2.2490 for Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Natural Image Quality Evaluator (NIQE), respectively. As demonstrated by the experiments on image Scale-Invariant Feature Transform (SIFT) feature detection and subsequent target detection, the results of our approach achieve excellent results in visual effect and image features.
In recent years, brain magnetic resonance imaging (MRI) image segmentation has drawn considerable attention. MRI image segmentation result provides a basis for medical diagnosis. The segmentation result influences the clinical treatment directly. Nevertheless, MRI images have shortcomings such as noise and the inhomogeneity of grayscale. The performance of traditional segmentation algorithms still needs further improvement. In this paper, we propose a novel brain MRI image segmentation algorithm based on fuzzy C-means (FCM) clustering algorithm to improve the segmentation accuracy. First, we introduce multitask learning strategy into FCM to extract public information among different segmentation tasks. It combines the advantages of the two algorithms. The algorithm enables to utilize both public information among different tasks and individual information within tasks. Then, we design an adaptive task weight learning mechanism, and a weighted multitask fuzzy C-means (WMT-FCM) clustering algorithm is proposed. Under the adaptive task weight learning mechanism, each task obtains the optimal weight and achieves better clustering performance. Simulated MRI images from McConnell BrainWeb have been used to evaluate the proposed algorithm. Experimental results demonstrate that the proposed method provides more accurate and stable segmentation results than its competitors on the MRI images with various noise and intensity inhomogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.