In this paper we propose and study the problem of trajectorydriven influential billboard placement: given a set of billboards U (each with a location and a cost), a database of trajectories T and a budget L, find a set of billboards within the budget to influence the largest number of trajectories. One core challenge is to identify and reduce the overlap of the influence from different billboards to the same trajectories, while keeping the budget constraint into consideration. We show that this problem is NP-hard and present an enumeration based algorithm with (1 − 1/e) approximation ratio. However, the enumeration should be very costly when |U | is large. By exploiting the locality property of billboards' influence, we propose a partition-based framework PartSel. PartSel partitions U into a set of small clusters, computes the locally influential billboards for each cluster, and merges them to generate the global solution. Since the local solutions can be obtained much more efficient than the global one, PartSel should reduce the computation cost greatly; meanwhile it achieves a non-trivial approximation ratio guarantee. Then we propose a LazyProbe method to further prune billboards with low marginal influence, while achieving the same approximation ratio as PartSel. Experiments on real datasets verify the efficiency and effectiveness of our methods.
Motivated by the application of viral marketing, the topic-aware influence maximization (TIM) problem has been proposed to identify the most influential users under given topics. In particular, it aims to find k seeds (users) in social network G, such that the seeds can maximize the influence on users under the specific query topics and diffusion model such as independent cascade (IC) or linear threshold (LT).
This problem has been proved to be NP-hard, and most of the proposed techniques suffer from the efficiency issue due to the lack of generalization. Even worse, the design of these algorithms requires significant specialized knowledge which is hard to be understood and implemented. To overcome these issues, this paper aims to learn a generalized heuristic framework to solve TIM problems by meta-learning. To this end, we first propose two topic-aware social influence propagation models based on IC and LT model, respectively, which is conducive to better advertising injections. We then encode the feature of each node by a vector and introduce a model, called deep influence evaluation model , to evaluate the user influence under different circumstances. Based on this model, we can construct the solution according to the influence evaluations efficiently, rather than spending a high cost to compute the exact influence by considering the complex graph structure. We conducted experiments on generated graph instances and real-world social networks. The results show the superiority in performance and comparable quality of our framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.