Carotenoids serve diverse functions in vastly different organisms that both produce and consume them. Enhanced carotenoid accumulation is of great importance in the visual and functional properties of fruits and vegetables. Significant progress has been achieved in recent years in our understanding of carotenoid biosynthesis in tomato (Solanum lycopersicum) using biochemical and genetics approaches. The carotenoid metabolic network is temporally and spatially controlled, and plants have evolved strategic tactics to regulate carotenoid metabolism in response to various developmental and environmental factors. In this review, we summarize the current status of studies on transcription factors and phytohormones that regulate carotenoid biosynthesis, catabolism, and storage capacity in plastids, as well as the responses of carotenoid metabolism to environmental cues in tomato fruits. Transcription factors function either in cooperation with or independently of phytohormone signaling to regulate carotenoid metabolism, providing novel approaches for metabolic engineering of carotenoid composition and content in tomato.
During normal development or during disease, animal cells experience hypoxic (low oxygen) conditions, and the hypoxia-inducible factor (HIF) transcription factors implement most of the critical changes in gene expression that enable animals to adapt to this stress. Here, we examine the roles of HIF-1 in post-mitotic aging. We examined the effects of HIF-1 over-expression and of hif-1 loss-of-function mutations on longevity in C. elegans, a powerful genetic system in which adult somatic cells are post-mitotic. We constructed transgenic lines that expressed varying levels of HIF-1 protein and discovered a positive correlation between HIF-1 expression levels and lifespan. The data further showed that HIF-1 acted in parallel to the SKN-1/NRF and DAF-16/FOXO transcription factors to promote longevity. HIF-1 over-expression also conferred increased resistance to heat and oxidative stress. We isolated and characterized additional hif-1 mutations, and we found that each of 3 loss-of-function mutations conferred increased longevity in normal lab culture conditions, but, unlike HIF-1 over-expression, a hif-1 deletion mutation did not extend the lifespan of daf-16 or skn-1 mutants. We conclude that HIF-1 over-expression and hif-1 loss-of-function mutations promote longevity by different pathways. These data establish HIF-1 as one of the key stress-responsive transcription factors that modulate longevity in C. elegans and advance our understanding of the regulatory networks that link oxygen homeostasis and aging.
Hypoxia-inducible factor (HIF) transcription factors implement essential changes in gene expression that enable animals to adapt to low oxygen (hypoxia). The stability of the C. elegans HIF-1 protein is controlled by the evolutionarily conserved EGL-9/VHL-1 pathway for oxygen-dependent degradation. Here, we describe vhl-1-independent pathways that attenuate HIF-1 transcriptional activity in C. elegans. First, the expression of HIF-1 target genes is markedly higher in egl-9 mutants than in vhl-1 mutants. We show that HIF-1 protein levels are similar in animals carrying strong loss-of-function mutations in either egl-9 or vhl-1. We conclude that EGL-9 inhibits HIF-1 activity, as well as HIF-1 stability. Second, we identify the rhy-1 gene and show that it acts in a novel negative feedback loop to inhibit expression of HIF-1 target genes. rhy-1 encodes a multi-pass transmembrane protein. Although loss-of-function mutations in rhy-1 cause relatively modest increases in hif-1 mRNA and HIF-1 protein expression, some HIF-1 target genes are expressed at higher levels in rhy-1 mutants than in vhl-1 mutants. Animals lacking both vhl-1 and rhy-1 function have a more severe phenotype than either single mutant. Collectively, these data support models in which RHY-1 and EGL-9 function in VHL-1-independent pathway(s) to repress HIF-1 transcriptional activity.
SUMMARY Synaptic contacts are largely established during embryogenesis and are then maintained during growth. To identify molecules involved in this process we conducted a forward genetic screen in C. elegans and identified cima-1. In cima-1 mutants, synaptic contacts are correctly established during embryogenesis, but ectopic synapses emerge during post-developmental growth. cima-1 encodes a solute carrier in the SLC17 family of transporters that includes Sialin, a protein that when mutated in humans results in neurological disorders. cima-1 does not function in neurons but rather functions in the nearby epidermal cells to correctly position glia during post-larval growth. Our findings indicate that CIMA-1 antagonizes the FGF receptor (FGFR), and does so most likely by inhibiting FGFR’s role in epidermal-glia adhesion rather than signaling. Our data suggest that epidermal-glia crosstalk, in this case mediated by a transporter and the FGF receptor, is vital to preserve embryonically-derived circuit architecture during post-developmental growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.