Radiosonde is extensively used for understanding meteorological parameters in the vertical direction. Four typhoon events, including three landfalls (MERANTI, NEPARTAK, and MEGI) and one non-landfall (MALAKAS), were chosen in analysing the precipitable water vapour (PWV) characteristics in this study. The spatial distribution of the three radiosonde stations in Zhejiang province does not meet the requirement in analysing changes in PWV during typhoon event. Global position system (GPS) observations are an alternative method for deriving the PWV. This enables improvements in the temporal–spatial resolution of PWV computed by the radiosonde measurements. The National Centers for Environmental Prediction (NCEP) re-analysed data were employed for interpolating temperature and atmosphere pressure at the GPS antennas height. The PWV computed from GPS observations and NCEP re-analysed data were then compared with the true PWV. The maximum difference of radiosonde and GPS PWV was not more than 30 mm at Taiz station. The Root-Mean-Square (RMS) of PWV differences between radiosonde and GPS was not more than 5 mm in January, February, March, November, and December. It was slightly greater than 5 mm in April. High RMS in May, June, July, August, September, and October implies that differences in GPS and radiosonde PWVs are evident in these months. Correlation coefficients of GPS and radiosonde PWVs were more than 0.9, indicating that the changes in GPS and radiosonde PWVs are similar. Radiosonde calculated PWVs were used for GPS PWV calibration for understanding the PWV changes during the period of a typhoon event. The results from three landfall typhoons show that the average PWV over Zhejiang province is increasing and approaching China mainland. In contrast, MALAKAS did not make landfall and shows a decreasing PWV trend, although it was heading to China mainland. Generally, the PWV change can be used to predict whether the typhoon will make landfall in these cases. PWV spatial distribution of MERANTI shows that PWV peaks change along the typhoon epicenter over Zhejiang province.
We have made careful field investigation and trench exploration to the Xishan fault system in west of Urumqi, and an integrated analysis in conjunction with data of deep seismic sounding. Our result suggests that under the SN-oriented compressive stress, the Xishan block moves steadily toward the Tianshan Mountains in south, resulting in southward thrust-slip and crustal shortening, particularly the southward thrust of the Xishan fault which serves as the main boundary in south. North of the Xishan fault are the Wangjiagou fault and Jiujiawan fault which are the secondary faults associated with the Xishan fault in generation. Both faults have slippage along horizons during the uplift of the Xishan block, and the Jiujiawan fault has also a component of normal faulting due to the influence of the Bogeda nappe structure. These two faults accommodate the fold deformation of the hanging wall of the Xishan fault, thus the Xishan fault-bounded swell is characterized by monocline. All secondary faults of the Xishan fault system constitute a common seismogenic structural system, so that their seismic hazards should be considered in an equal manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.