Tuning the nature and profile of acidic and basic sites on the surface of redox-active metal oxide nanostructures is a promising approach to constructing efficient catalysts for the oxidative removal of chlorinated volatile organic compounds (CVOCs). Herein, using dichloromethane (DCM) oxidation as a model reaction, we report that phosphate (PO x ) Brønsted acid sites can be incorporated onto a CeO 2 nanosheet (NS) surface via an organophosphate-mediated route, which can effectively enhance the CeO 2 's catalytic performance by promoting the removal of chlorine poisoning species. From the systematic study of the correlation between PO x composition, surface structure (acid and basic sites), and catalytic properties, we find that the incorporated Brønsted acid sites can also function to decrease the amount of medium-strong basic sites (O 2− ), reducing the formation of chlorinated organic byproduct monochloromethane (MCM) and leading to the desirable product, HCl. At the optimized P/Ce ratio (0.2), the PO x −CeO 2 NSs can perform a stable DCM conversion of 65−70% for over 10 h at 250 °C and over 95% conversion at 300 °C, superior to both pristine and other phosphate-modified CeO 2 NSs. Our work clearly identifies the critical role of acid and basic sites over functionalized CeO 2 for efficient catalytic CVOCs oxidation, guiding future advanced catalyst design for environmental remediation.
Suitability of plant tissues as food for insects varies from plant to plant. In lepidopteran insects, fitness is largely dependent on the host-finding ability of the females. Existing studies have suggested that polyphagous lepidopterans preferentially select certain host plant species for oviposition. However, the mechanisms for host recognition and selection have not been fully elucidated. For the polyphagous yellow peach moth Conogethes punctiferalis, we explored the effect of chestnut cultivar on the performance and fitness and addressed the mechanisms of plant-volatile-mediated host recognition. By carrying out laboratory experiments and field investigation on four chestnut Castanea mollissima cultivars (Huaihuang, Huaijiu, Yanhong, and Shisheng), we found that C. punctiferalis females preferentially select Huaijiu for oviposition and infestation, and caterpillars fed on Huaijiu achieved slightly greater fitness than those fed on the other three chestnut cultivars, indicating that Huaijiu was a better suitable host for C. punctiferalis. Plant volatiles played important roles in host recognition by C. punctiferalis. All seven chestnut volatile compounds, α-pinene, camphene, β-thujene, β-pinene, eucalyptol, 3-carene, and nonanal, could trigger EAG responses in C. punctiferalis. The ubiquitous plant terpenoids, α-pinene, camphene and β-pinene, and their specific combination at concentrations and proportions similar to the emissions from the four chestnut cultivars, was sufficient to elicit host recognition behavior of female C. punctiferalis. Nonanal and a mixture containing nonanal, that mimicked the emission of C. punctiferalis infested chestnut fruits, caused avoidance response. The outcome demonstrates the effects of chestnut cultivars on the performance of C. punctiferalis and reveals the preference-performance relationship between C. punctiferalis adults and their offspring. The observed olfactory plasticity in the plant-volatile-mediated host recognition may be important for the forming of the relationship between yellow peach moth and chestnuts since it allows the polyphagous herbivores to adjust to variation in volatile emission from their host plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.