The vertebrate Dlx gene family consists of homeobox-containing transcription factors distributed in pairs on the same chromosomes as the Hox genes. To investigate the evolutionary history of Dlx genes, we have cloned five new zebrafish family members and have provided additional sequence information for two mouse genes. Phylogenetic analyses of Dlx gene sequences considered in the context of their chromosomal arrangements suggest that an initial tandem duplication produced a linked pair of Dlx genes after the divergence of chordates and arthropods but prior to the divergence of tunicates and vertebrates. This pair of Dlx genes was then duplicated in the chromosomal events that led to the four clusters of Hox genes characteristic of bony fish and tetrapods. It is possible that a pair of Dlx genes linked to the Hoxc cluster has been lost from mammals. We were unable to distinguish between independent duplication and retention of the ancestral state of bony vertebrates to explain the presence of a greater number of Dlx genes in zebrafish than mammals. Determination of the linkage relationship of these additional zebrafish Dlx genes to Hox clusters should help resolve this issue.
p204, an interferon-inducible p200 family protein, inhibits rRNA synthesis in fibroblasts by blocking the binding of the upstream binding factor transcription factor to DNA. Here we report that among 10 adult mouse tissues tested, the level of p204 was highest in heart and skeletal muscles. In cultured C2C12 skeletal muscle myoblasts, p204 was nucleoplasmic and its level was low. During myoblast fusion this level strongly increased, p204 became phosphorylated, and the bulk of p204 appeared in the cytoplasm of the myotubes. Leptomycin B, an inhibitor of nuclear export that blocked myoblast fusion, inhibited the nuclear export signal-dependent translocation of p204 to the cytoplasm. The increase in the p204 level during myoblast fusion was a consequence of MyoD transcription factor binding to several MyoD-specific sequences in the gene encoding p204, followed by transcription. Overexpression of p204 (in C2C12 myoblasts carrying an inducible p204 expression plasmid) accelerated the fusion of myoblasts to myotubes in differentiation medium and induced the fusion even in growth medium. The level of p204 in mouse heart muscle strongly increased during differentiation; it was barely detectable in 10.5-day-old embryos, reached the peak level in 16.5-day-old embryos, and remained high thereafter. p204 is the second p200 family protein (after p202a) found to be involved in muscle differentiation.
The mammalian Dlx homeobox gene family has been shown to play multiple roles in tooth development, but a detailed comparison of the expression pattern of all members throughout tooth development has been lacking. We provide such an analysis for the six known murine Dlx genes. The expression patterns for these genes allow a refinement of previously proposed models for the role of Dlx genes in tooth type specification and raise the possibility of roles for subsets of these genes in tooth initiation, morphogenesis (enamel navel formation, enamel knot induction, cervical loop growth), and enamel formation. The relationship of Dlx gene expression to their genomic organization suggests coordinate regulation of linked genes at early stages but regulatory differences at later stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.