This study aimed to investigate the mechanism by which the human lung cancer drug resistance-related gene BC006151 regulates chemosensitivity by down-regulating BC006151 expression via antisense gene transfer in H446/ C DDP cells. A retroviral vector containing the antisense BC006151 sequence was constructed and transfected into H446/ C DDP cells. Transfection of the empty vector served as a negative control. The two groups of transfected cells were treated with various chemotherapeutic agents, after which morphological changes in cell ultrastructure were compared by transmission electron microscopy, cell proliferation and chemosensitivity to particular chemotherapeutic agents were compared by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, the effects of chemotherapy on cell cycle and apoptosis were compared by flow cytometry, and Bcl-2 was evaluated by immunohistochemistry and Western blot analysis. Results showed that apoptotic bodylike structures were identified by transmission electron microscopy in the antisense gene-transfected cells. MTT founded that these cells exhibited a significantly lower level of proliferation than the control cells (pϽ0.01), together with a markedly increased sensitivity to various chemotherapeutic agents (pϽ0.01). Flow cytometry analysis revealed that a G1 phase arrest accounted for the reduction in proliferation in the antisense gene-transfected cells; increased apoptosis was also detected (pϽ0.01). Both immunohistochemistry and western blot analysis confirmed that Bcl-2 expression was significantly down-regulated in the antisense gene-transfected cells compared to controls. In a word, down-regulation of BC006151 can significantly inhibit proliferation and increase apoptosis of H446/ C DDP cells after chemotherapy, and this gene may play an important role in the development of multidrug resistance in lung cancer.
In this study, the whole mitochondrial genomes of Physogyra lichtensteini and Plerogyra sinuosa have been sequenced for the first time. The length of their assembled mitogenome sequences were 17,286 bp and 17,586 bp, respectively, both including 13 protein-coding genes, two tRNAs, and two rRNAs. Their mitogenomes offered no distinct structure and their gene order were the same as other typical scleractinians. Based on 13 protein-coding genes, a maximum likelihood phylogenetic analysis showed that Physogyra lichtensteini and Plerogyra sinuosa are clustered in the family Plerogyridae, which belongs to the “Robust” clade. The 13 tandem mitogenome PCG sequences used in this research can provide important molecular information to clarify the evolutionary relationships amongst stony corals, especially at the family level. On the other hand, more advanced markers and more species need to be used in the future to confirm the evolutionary relationships of all the scleractinians.
Objective Interleukin (IL)-17 is a multifunctional cytokine with important roles in inflammatory and autoimmune diseases. This case–control study explored the relationships of IL-17A rs2275913 and IL-17F rs763780 single-nucleotide polymorphisms (SNPs) with recurrent aphthous ulcer (RAU) morbidity and severity. Methods IL-17A rs2275913 and IL-17F rs763780 SNPs were measured in 125 patients with RAU and 116 healthy control participants. The genotype distributions, disease risks, and relationships with RAU severity were analyzed. Results RAU risk was associated with rs2275913 after adjustment for age, body mass index, sex, smoking status, and drinking status (AA vs. GG: odds ratio [OR], 2.759; 95% confidence interval [CI], 1.381–5.512; A allele vs. G allele: OR, 1.783; 95% CI, 1.242–2.560). TC and CC genotypes in rs763780, and the corresponding C allele, demonstrated greater prevalence among patients with RAU, compared with the TT genotype (TC vs. TT, OR: 1.895; 95% CI: 1.088–3.301; CC vs. TT, OR: 4.080, 95% CI: 1.079–15.425; C allele vs. T allele, OR: 1.969, 95% CI: 1.257–3.083). Serum IL-17 concentrations were also higher in patients with RAU than in control participants. These concentrations were associated with IL-17 polymorphisms. Conclusions IL-17 polymorphisms might be associated with greater risk of RAU pathogenesis.
Complete mitochondrial DNA sequence data have played a significant role in phylogenetic and evolutionary studies of scleractinian corals. In this study, the complete mitogenome of Psammocora profundacella Gardiner, 1898, collected from Guangdong Province, China, was sequenced by next-generation sequencing for the first time. Psammocora profundacella is the first species for which a mitogenome has been sequenced in the family Psammocoridae. The length of its assembled mitogenome sequence was 16,274 bp, including 13 protein-coding genes, two tRNAs and two rRNAs. Its gene content and gene order were consistent with the other Scleractinia species. All genes were encoded on the H strand and the GC content of the mitochondrial genome was 30.49%. Gene content and order were consistent with the other Scleractinia species. Based on 13 protein-coding genes, Maximum Likelihood phylogenetic analysis showed that P. profundacella belongs to the “Robust” clade. Mitochondrial genome data provide important molecular information for understanding the phylogeny of stony corals. More variable markers and additional species should be sequenced to confirm the evolutionary relationships of Scleractinia in the future.
Montipora vietnamensis Veron, 2000 (Cnidaria, Anthozoa, Scleractinia, Acroporidae) is an uncommon, but distinctive species of stony coral. The complete mitochondrial genome of M. vietnamensis was sequenced in this study for the first time, based on 32 pairs of primers newly designed according to seven species in the family Acroporidae. The mitogenome of M. vietnamensis has a circular form and is 17,885 bp long, including 13 protein-coding genes (PCGs), 2 tRNA (tRNAMet, tRNATrp), 2 rRNA genes and a putative control-region. The base composition of the complete mitogenome was 24.8% A, 14.2% C, 24.2% G and 36.8% T, with a higher AT content (61.6%) than GC content (38.4%). Based on 13 protein-coding genes, a Maximum Likelihood phylogenetic analysis showed that M. vietnamensis is clustered in the genus Montipora which belongs to the family Acroporidae. More stony coral species should be sequenced for basic molecular information and to help confirm the taxonomic status and evolutionary relationships of Scleractinia in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.