This paper concerns the adaptive finite element method for elliptic Dirichlet boundary control problems in the energy space. The contribution of this paper is twofold. First, we rigorously derive efficient and reliable a posteriori error estimates for finite element approximations of Dirichlet boundary control problems. As a by-product, a priori error estimates are derived in a simple way by introducing appropriate auxiliary problems and establishing certain norm equivalence. Secondly, for the coupled elliptic partial differential system that resulted from the first-order optimality system, we prove that the sequence of adaptively generated discrete solutions including the control, the state and the adjoint state, guided by our newly derived a posteriori error indicators, converges to the true solution along with the convergence of the error estimators. We give some numerical results to confirm our theoretical findings.
SummaryIn this paper, we consider the efficient solving of the resulting algebraic system for elliptic optimal control problems with mixed finite element discretization.We propose a block-diagonal preconditioner for the symmetric and indefinite algebraic system solved with minimum residual method, which is proved to be robust and optimal with respect to both the mesh size and the regularization parameter. The block-diagonal preconditioner is constructed based on an isomorphism between appropriately chosen solution space and its dual for a general control problem with both state and gradient state observations in the objective functional. Numerical experiments confirm the efficiency of our proposed preconditioner.
We design and analyze a [Formula: see text] virtual element method for an elliptic distributed optimal control problem with pointwise state constraints. Theoretical estimates and corroborating numerical results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.