In this work, Y2.95R0.05MgAl3SiO12 (R = Yb, Y, Dy, Eu, Sm) microwave single-phase dielectric ceramics were successfully prepared via a conventional ceramic sintering technology by doping a series of rare earth elements (Yb, Y, Dy, Eu, Sm) with different ionic radii for the first time. The effects of A-sites occupied by rare earth elements on the microwave dielectric properties of Y2.95R0.05MgAl3SiO12 were studied using crystal structure refinement, a scanning electron microscope (SEM), bond valence theory, P-V-L theory, and infrared reflection spectroscopy. It was found that the ionicity of the Y-O bond, the lattice energy, the bond energy, and the bond valance of the Al(Tet)-O bond had important effects on the microwave dielectric properties. Particularly, the optimum microwave dielectric properties, εr = 9.68, Q × f = 68,866 GHz, and τf = −35.8 ppm/°C, were obtained for Y2.95Dy0.05MgAl3SiO12 when sintered at 1575 °C for 6 h, displaying its potential for 5G communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.