Abstract.A fully coupled meteorology-chemistry model (WRF-Chem, the Weather Research and Forecasting model coupled with chemistry) has been configured to conduct quasi-global simulation for 5 years (2010)(2011)(2012)(2013)(2014) and evaluated with multiple observation data sets for the first time. The evaluation focuses on the simulation over the trans-Pacific transport region using various reanalysis and observational data sets for meteorological fields and aerosol properties. The simulation generally captures the overall spatial and seasonal variability of satellite retrieved aerosol optical depth (AOD) and absorbing AOD (AAOD) over the Pacific that is determined by the outflow of pollutants and dust and the emissions of marine aerosols. The assessment of simulated extinction Ångström exponent (EAE) indicates that the model generally reproduces the variability of aerosol size distributions as seen by satellites. In addition, the vertical profile of aerosol extinction and its seasonality over the Pacific are also well simulated. The difference between the simulation and satellite retrievals can be mainly attributed to model biases in estimating marine aerosol emissions as well as the satellite sampling and retrieval uncertainties. Compared with the surface measurements over the western USA, the model reasonably simulates the observed magnitude and seasonality of dust, sulfate, and nitrate surface concentrations, but significantly underestimates the peak surface concentrations of carbonaceous aerosol likely due to model biases in the spatial and temporal variability of biomass burning emissions and secondary organic aerosol (SOA) production. A sensitivity simulation shows that the trans-Pacific transported dust, sulfate, and nitrate can make significant contribution to surface concentrations over the rural areas of the western USA, while the peaks of carbonaceous aerosol surface concentrations are dominated by the North American emissions. Both the retrievals and simulation show small interannual variability of aerosol characteristics for 2010-2014 averaged over three Pacific sub-regions. The evaluation in this study demonstrates that the WRF-Chem quasi-global simulation can be used for investigating trans-Pacific transport of aerosols and providing reasonable inflow chemical boundaries for the western USA, allowing one to further understand the impact of transported pollutants on the regional air quality and climate with high-resolution nested regional modeling.
Herbs are often administered in combination with therapeutic drugs, raising the potential of herb-drug interactions. An extensive review of the literature identified reported herb-drug interactions with clinical significance, many of which are from case reports and limited clinical observations. Cases have been published reporting enhanced anticoagulation and bleeding when patients on long-term warfarin therapy also took Salvia miltiorrhiza (danshen). Allium sativum (garlic) decreased the area under the plasma concentration-time curve (AUC) and maximum plasma concentration of saquinavir, but not ritonavir and paracetamol (acetaminophen), in volunteers. A. sativum increased the clotting time and international normalised ratio of warfarin and caused hypoglycaemia when taken with chlorpropamide. Ginkgo biloba (ginkgo) caused bleeding when combined with warfarin or aspirin (acetylsalicylic acid), raised blood pressure when combined with a thiazide diuretic and even caused coma when combined with trazodone in patients. Panax ginseng (ginseng) reduced the blood concentrations of alcohol (ethanol) and warfarin, and induced mania when used concomitantly with phenelzine, but ginseng increased the efficacy of influenza vaccination. Scutellaria baicalensis (huangqin) ameliorated irinotecan-induced gastrointestinal toxicity in cancer patients.Piper methysticum (kava) increased the 'off' periods in patients with parkinsonism taking levodopa and induced a semicomatose state when given concomitantly with alprazolam. Kava enhanced the hypnotic effect of alcohol in mice, but this was not observed in humans. Silybum marianum (milk thistle) decreased the trough concentrations of indinavir in humans. Piperine from black (Piper nigrum Linn) and long (P. longum Linn) peppers increased the AUC of phenytoin, propranolol and theophylline in healthy volunteers and plasma concentrations of rifamipicin (rifampin) in patients with pulmonary tuberculosis. Eleutheroccus senticosus (Siberian ginseng) increased the serum concentration of digoxin, but did not alter the pharmacokinetics of dextromethorphan and alprazolam in humans. Hypericum perforatum (hypericum; St John's wort) decreased the blood concentrations of ciclosporin (cyclosporin), midazolam, tacrolimus, amitriptyline, digoxin, indinavir, warfarin, phenprocoumon and theophylline, but did not alter the pharmacokinetics of carbamazepine, pravastatin, mycophenolate mofetil and dextromethorphan. Cases have been reported where decreased ciclosporin concentrations led to organ rejection. Hypericum also caused breakthrough bleeding and unplanned pregnancies when used concomitantly with oral contraceptives. It also caused serotonin syndrome when used in combination with selective serotonin reuptake inhibitors (e.g. sertraline and paroxetine). In conclusion, interactions between herbal medicines and prescribed drugs can occur and may lead to serious clinical consequences. There are other theoretical interactions indicated by preclinical data. Both pharmacokinetic and/or pharmacodynamic mechanis...
Abstract.A state-of-the-art regional model, the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) coupled with a chemistry component (Chem) (Grell et al., 2005), is coupled with the snow, ice, and aerosol radiative (SNICAR) model that includes the most sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall within the uncertainty ranges of observations. The simulated BCS and DSTS are highest with > 5000 ng g −1 and up to 5 mg g −1 , respectively, over the source regions and reduce to < 50 ng g −1 and < 1 µg g −1 , respectively, in the remote regions. BCS and DSTS introduce a similar magnitude of radiative warming (∼ 10 W m −2 ) in the snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents an effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snowpack.Although a variety of observational data sets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.