This paper presents a constrained connected automated vehicles (CAVs) trajectory optimization method on curved roads with infrastructure assistance. Specifically, this paper systematically formulates trajectory optimization problems in a spatial domain and a curvilinear coordinate. As an alternative of temporal domain and Cartesian coordinate formulation, our formulation provides the constrained trajectory optimization flexibility to describe complex road geometries, traffic regulations, and road obstacles, which are usually spatially varying rather than temporal varying, with assistances vehicle to infrastructure (V2I) communication. Based on the formulation, we first conducted a mathematical proof on the controllability of our system, to show that our system can be controlled in the spatial domain and curvilinear coordinate. Further, a multiobjective model predictive control (MPC) approach is designed to optimize the trajectories in a rolling horizon fashion and satisfy the collision avoidances, traffic regulations, and vehicle kinematics constraints simultaneously. To verify the control efficiency of our method, multiscenario numerical simulations are conducted. Suggested by the results, our proposed method can provide smooth vehicular trajectories, avoid road obstacles, and simultaneously follow traffic regulations in different scenarios. Moreover, our method is robust to the spatial change of road geometries and other potential disturbances by the road curvature, work zone, and speed limit change.
This article presents an overview of the agent-based modeling and simulation approach and its recent developments in transport fields, with the purpose of discovering the advantages and gaps and encouraging more valuable investigations and applications of agent-based models. We clarify the agent-based model from agents, the background of development, and the basic structure applied in transport systems. Then, the agent-based transport modeling toolkits are discussed. The applications of agent-based models in transport systems are reviewed in three time scale models followed by an additional discussion of hybrid modeling approaches. The extensive modeling of the beliefs, desires, learning, and adaptability of individuals and the optimization problems using agent-based models are explored. Besides, we point out some limitations in terms of calibration and validation procedure, agents’ behavior modeling, and computing efficiency. In conclusion, some recommendations are given and suggest potential and insightful directions such as Big Data and Digital Twin for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.