Renal cell carcinoma (RCC) is one of the most common malignant tumors affecting the urogenital system, accounting for 90% of renal malignancies. Traditional chemotherapy options are often the front-line choice of regimen in the treatment of patients with RCC, but responses may be modest or limited due to resistance of the tumor to anticarcinogen. Downregulated expression of organic cation transporter OCT2 is a possible mechanism underlying oxaliplatin resistance in RCC treatment. In this study, we observed that miR-489-3p and miR-630 suppress OCT2 expression by directly binding to the OCT2 3′-UTR. Meanwhile, via 786-O-OCT2-miRNAs stable expression cell models, we found that miRNAs could repress the classic substrate 1-methyl-4-phenylpyridinium (MPP+), fluorogenic substrate N,N-dimethyl-4-(2-pyridin-4-ylethenyl) aniline (ASP+), and oxaliplatin uptake by OCT2 both in vitro and in xenografts. In 33 clinical samples, miR-489-3p and miR-630 were significantly upregulated in RCC, negatively correlating with the OCT2 expression level compared to that in adjacent normal tissues, using tissue microarray analysis and qPCR validation. The increased binding of c-Myc to the promoter of pri-miR-630, responsible for the upregulation of miR-630 in RCC, was further evidenced by chromatin immunoprecipitation and dual-luciferase reporter assay. Overall, this study indicated that miR-489-3p and miR-630 function as oncotherapy-obstructing microRNAs by directly targeting OCT2 in RCC.
Renal cell carcinoma (RCC) is a common malignant tumour affecting the urinary system, and multidrug resistance is one of the major reasons why chemotherapy for this type of cancer often fails. Previous studies have shown that loss of the human organic cation transporter OCT2 is the main factor contributing to oxaliplatin resistance in RCC, and that DNA hypermethylation and histone methylation play important roles in the transcriptional repression of OCT2 in RCC. In this study, we found that histone acetylation also regulates OCT2 repression in RCC and elucidated the underlying mechanisms. In normal renal cells, HDAC7 combines with MYC at the OCT2 promoter, resulting in a decrease in free HDAC7, which in turn increases the levels of H3K18ac and H3K27ac at the OCT2 promotor and activates OCT2 expression. In RCC cells, however, the interaction between HDAC7 and MYC does not occur, which leads a high abundance of HDAC7 and low levels of H3K18ac and H3K27ac at the OCT2 promoter, thereby resulting in the inhibition of OCT2 transcription. We found that combined treatment using the DNA methylation inhibitor decitabine and the histone deacetylase inhibitor vorinostat significantly increased the expression of OCT2 in RCC cell lines, which sensitized these cells to oxaliplatin. We accordingly propose that the combination of anticancer agents and epigenetic drugs can provide a novel chemotherapeutic regimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.